
MATH 301 Differential Equations Spring 2006

Linear algebra and the geometry of quadratic equations

Similarity transformations and orthogonal matrices

First, some things to recall from linear algebra. Two square matrices A and B are
similar if there is an invertible matrix S such that A = S−1BS. This is equivalent
to B = SAS−1. The expression SAS−1 is called a similarity transformation of the
matrix A. A square matrix A is diagonalizable if it is similar to a diagonal matrix D.
That is, A is diagonalizable if there is a diagonal matrix D and an invertible matrix
S such that D = SAS−1.

Similarity transformations can be thought of in terms of a change of basis (see
Theorems CB, ICBM, and SCB of A First Course in Linear Algebra). Here, we’ll
limit our attention to the vector spaces R

n. If {~v1, ~v2, . . . , ~vn} is a basis for R
n, then

{S~v1, S~v2, . . . , S~vn} is another basis for R
n. If ~v is in R

n and A is an (n× n) matrix,
then we can rewrite the product A~v as

A~v = (S−1BS)~v = S−1B(S~v).

We can read the last expression in the following way: Start with the vector ~v, multiply
by S to change bases, then multiply by B, and finally multiply by S−1 to return to
the original basis. All of this is equivalent to multiplying by A in the original basis.
So what’s the point? If we choose S carefully, then multiplication by B is easier than
multiplication by A. In particular, if A is diagonalizable, we get to multiply by a
diagonal matrix which is particularly easy. This will be very useful in our application
to quadratic equations below.

A similarity transformation is particularly nice if the matrix S is orthogonal. By
definition, a (real) square matrix S is orthogonal if ST S = I where ST is the transpose
of S and I is the identity matrix (of the appropriate size). An orthogonal matrix is
invertible and S−1 = ST . It is a theorem (for example, see Theorem COMOS of

FCLA) that a matrix S = [~S1, ~S2, . . . , ~Sn] is orthogonal if and only if the set of

column vectors {~S1, ~S2, . . . , ~Sn} is an orthonormal set. Expressed in terms of inner

product, this means
〈

~Si, ~Sj

〉

= 0 for i 6= j and
〈

~Si, ~Si

〉

= 1.
For the vector spaces R

2 and R
3, we can think of vectors both algebraically and

geometrically as in multivariate calculus. For the most part, we’ll focus on R
2 so

we can more easily draw pictures. The geometric interpretation of a vector is as a
directed line segment, that is, an arrow. For our purposes here, it will be enough to
focus on arrows with tail based at the origin of a chosen coordinate system. If the head
of the arrow is at the point P (x, y), we can make a correspondence with the column

vector

[

x
y

]

. Starting with the column vector

[

v1

v2

]

we can make a correspondence with

the arrow having tail at the origin and head at the point P (v1, v2). When thinking
geometrically, we will denote the standard basis vectors by ı̂ and ̂ (with k̂ included
when working in R

3). We can then write

~v =

[

v1

v2

]

= v1

[

1
0

]

+ v2

[

0
1

]

= v1ı̂ + v2̂.



So, when we are given a vector ~v in R
2 or R

3, we can think of it as either an arrow
vector or a column vector as suits our needs. Note a subtle point here: The corre-
spondence we make depends on having picked a coordinate system for the geometric
plane and a basis for the space of column vectors.

P (x, y)

↔
[

x
y

]

Figure 1: Correspondence between arrows and column vectors

In the geometric view, we can think of the inner product of linear algebra as the
dot product from multivariate calculus. That is, with

~u =





u1

u2

u3



 = u1ı̂ + u2̂ + u3k̂, and ~v =





v1

v2

v3



 = v1ı̂ + v2̂ + v3k̂

we have
〈

S~u, S~v
〉

= u1v1 + u2v2 + u3v3 = ~u · ~v.

Recall that ‖v‖2 = ~v ·~v gives the square of the length of the (arrow) vector ~v. Angles
enter through the result connecting algebra and geometry of dot products, namely

~u · ~v = ‖~u‖ ‖~v‖ cos θ

where θ is the angle between the (arrow) vectors ~u and ~v. A pair of vectors that
are orthogonal as column vectors (

〈

~u,~v
〉

= 0) are perpendicular as arrow vectors
(~u · ~v = 0).

Let’s look at the geometry of multiplying a vector by an orthogonal matrix. We
know that multiplication by an orthogonal matrix preserves the inner product (The-
orem OMPIP) and hence the norm. That is, if S is orthogonal, then

〈

S~u, S~v
〉

=
〈

~u,~v
〉

(1)

for any pair of vectors ~u and ~v so

‖S ~w‖ = ‖~w‖. (2)

for any vector ~w. To connect with a geometric interpretation in R
2 and R

3, we will
think of the inner product as the dot product (from multivariate calculus). Geomet-
rically, ~w and S ~w have the same length for any vector ~w in R

2 or R
3. When we are

emphasizing geometric interpretations, we might write Display (1) in terms of the dot
product as

(S~u) · (S~v) = ~u · ~v (3)



Using the geometric interpretation of dot product, we have

‖S~u‖ ‖S~v‖ cos φ = ‖~u‖ ‖~v‖ cos θ

where φ is the angle between S~u and S~v while θ is the angle between ~u and ~v.
Using the facts that ‖S~u‖ = ‖~u‖ and ‖S~v‖ = ‖~v‖, we see that cos φ = cos θ so
φ = θ. So, multiplication by an orthogonal matrix preserves lengths of vectors and
angles between pairs of vectors. Note that the same holds true for the geometric
transformation of rotation through a specified angle.

Exercise 1. Show that a (2 × 2) matrix S is orthogonal if and only if there is an
angle θ such that

S =

[

cos θ − sin θ
sin θ cos θ

]

(4)

or

S =

[

cos θ sin θ
sin θ − cos θ

]

. (5)

Exercise 2. Convince yourself that multiplication by a matrix of the form Display
(4) rotates a vector through the angle θ. Start by looking at the standard basis
vectors ı̂ and ̂. You might also want to choose some specific angles θ with which to
experiment. Try θ = 0, θ = π/4, θ = π/2, and θ = π.

Exercise 3. Determine the geometric interpretation of multiplication by a matrix of
the form Display (5). Start by looking at the standard basis vectors ı̂ and ̂.

Quadratic equations and curves

Somewhere along the line, you learned that an ellipse can be described by an equation
of the form is

x2

r2
1

+
y2

r2
2

= 1. (6)

If r1 > r2, then the major axis and minor axis of the ellipse lie along the x-axis and
y-axis, respectively. The semi-major axis length is given by r1 and the semi-minor

axis length is given by r2. You should remind yourself of the connection between the
geometric definition of an ellipse and the analytic description given in Display (6).

Exercise 4. Here is a geometric definition of ellipse: Pick two points F1 and F2 and a
distance d greater than |F1F2|. An ellipse with foci F1 and F2 is the set of all points P
such that |PF1| + |PF2| = d. Show the connection between this geometric definition
and the analytic description given in Display (6). To do this, choose a coordinate
system with origin at the midpoint of the segment F1F2 and x-axis containing F1 and
F2. Show P is on the ellipse if and only if the coordinates (x, y) of P satisfy Display
(6).

You should also know that every quadratic equation in two variables corresponds
to an ellipse, a hyperbola, or a parabola. Rather than look at all quadratic equations
in two variables, we’ll limit our attention to quadratic equations of the form

Ax2 + 2Bxy + Cy2 = 1. (7)



(The factor of 2 in the cross term is for convenience.) Given an equation of this form,
we want to know whether the equation corresponds to an ellipse, a hyperbola, or a
parabola. We’ll make nice use of some linear algebra to do this.

Start by defining

~x =

[

x
y

]

and Q =

[

A B
B C

]

.

You should check that
~xT Q~x = Ax2 + 2Bxy + Cy2.

Note that Q is a real symmetric matrix so the eigenvalues of Q are real and the cor-
responding eigenvectors are orthogonal. (See Theorem HMRE and Theorem HMOE
of FCLA. Note that a real symmetric matrix is Hermitian.) . Let α1 and α2 denote
the eigenvalues of Q and let ~u1 and ~u2 denote corresponding eigenvectors. Choose ~u1

and ~u2 to be unit vectors.
Define the matrix S = [~u1, ~u2] and note that S is an orthogonal matrix since

{~u1, ~u2} is an orthonormal set (Theorem COMOS of FCLA). We can also choose ~u2

so that S has the form given in Display (4). We can use S to diagonalize the matrix
Q by a similarity transformation. That is,

SQST = D =

[

α1 0
0 α2

]

. (8)

Rewrite the similarity transformation in Display (8) to get Q = ST DS. Using
this, we have

~xT Q~x = ~xT ST DS~x = (S~x)T D(S~x) = ~XT D ~X

where we have defined ~X = S~x to get the last expression. Introducing components
of ~X as

~X =

[

X
Y

]

,

we can write

~X T D ~X =
[

X Y
]

[

α1 0
0 α2

] [

X
Y

]

= α1X
2 + α2Y

2.

Thus, our original equation

Ax2 + 2Bxy + Cy2 = 1

is equivalent to the new equation

α1X
2 + α2Y

2 = 1. (9)

To see the utility of rewriting our original equation in this new form, let’s look at
the geometric relation between ~x and ~X = S~x. Recall that S is orthogonal and of
the form given in Display (4). The geometric effect of multiplication by S is rotation
through the angle θ. That is, if we consider ~x as a geometric vector (i.e., a directed line
segment of specific length and direction), then S~x is the geometric vector obtained
by rotating ~x as shown in Figure 2.



~x

~X = S~x

θ

Figure 2: Multiplication by an or-
thogonal matrix
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Figure 3: Rotation of coordinate axes

If we think of ~x as a position vector for a point with coordinates (x, y) in our

original coordinate system, then ~X is a position vector for the point with coordinates
(X,Y ) with respect to a new coordinate system, one that has the same origin but
with coordinate axes rotated by the angle θ with respect to the x− and y−axes as
shown in Figure 3. The new coordinate basis vectors Î and Ĵ are rotations of ı̂ and
̂. Note that since we built the roation (i.e., orthogonal) matrix S using eigenvectors
~u1 and ~u2 of the symmetric matrix Q, we have that Î = Sı̂ is the first column of S so
Î = ~u1 and Ĵ = Ŝ is the second column of S so Ĵ = ~u2. In other words, the X-axis
and Y -axis lie along the eigenspaces of the symmetric matrix Q.

The equations in Display (7) and Display (9) describe the same curve in different
coordinate systems. We can easily read off geometric information from Display (9).
Recall that α1 and α2 are the eigenvalues of the matrix

Q =

[

A B
B C

]

.

The characteristic polynomial of Q is

λ2 − (A + C)λ + (AC − B2) = (λ − α1)(λ − α2) = λ2 − (α1 + α2)λ + α1α2.

By comparing the first and last expressions, we see that AC − B2 = α1α2. (Note
that AC −B2 = det Q so this says that the determinant of Q is equal to the product
of the eigenvalues. This statement is true for any square matrix.) We now consider
cases.

1. det Q = AC −B2 > 0: In this case, the eigenvalues α1 and α2 are both nonzero
and have the same sign. If both are negative, then Display (9) has no solutions.
If both are positive, then Display (9) is the equation of an ellipse with major
and minor axes along the X-axis and Y -axis.

2. det Q = AC −B2 < 0: In this case, the eigenvalues α1 and α2 are both nonzero
and have opposite signs. Display (9) is the equation of a hyperbola with sym-
metry axes along the X-axis and Y -axis.

3. det Q = AC − B2 = 0: In this case, either α1 = 0 or α2 = 0. For α1 = 0,
Display (9) reduces to α2Y

2 = 1 so Y = ±1/
√

|α2|. You can think about this
pair of lines as a “degenerate” hyperbola.



Example 1. Let’s determine the geometry of the curve given by

73x2 − 72xy + 52y2 = 100.

We first divide both sides by 100 to get the standard form

73
100

x2 − 72
100

xy + 52
100

y2 = 1

of Display (7). From this, we read off

Q =

[

73
100

− 36
100

− 36
100

52
100

]

=
1

100

[

73 −36
−36 52

]

.

Using technology, we find the eigenvalues and eigenvectors of Q are

α1 = 1 with ~u1 =

[

3
5
4
5

]

and

α2 =
1

4
with ~u2 =

[

4
5

−3
5

]

.

Since the eigenvalues are both positive, we have an ellipse. The major axis is in the
direction ~u2 and the semi-major axis length is 1/

√

1/4 = 2. The minor axis is in the

direction ~u1 and the semi-minor axis length is 1/
√

1 = 1. Note that the symmetry
axes are perpendicular as we expect. The ellipse is shown in Figure 4.
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Figure 4: The ellipse of Example 1

In the context of solving linear systems of equations, we often arrive at a solution
in the form

[

x(t)
y(t)

]

=

[

a cos t + b sin t
c cos t + d sin t

]

. (10)

We’ll now show that this parametrizes an ellipse and we’ll see how to determine the
geometry of the ellipse using the ideas from above. We’ll start by “deparametrizing”



to get an equation satisfied by x and y. First, note that we can rewrite Display (10)
as

[

x
y

]

=

[

a b
c d

] [

cos t
sin t

]

If ∆ = ad − bc 6= 0, the matrix on the right side is invertible so we can write

[

cos t
sin t

]

=

[

a b
c d

]

−1 [

x
y

]

=
1

∆

[

d −b
−c a

] [

x
y

]

=
1

∆

[

dx − by
−cx + ay

]

.

This give us expressions for cos t and sin t in terms of x and y. Substituting into the
Pythagorean identity gives us

1 = cos2 t + sin2 t =
1

∆2
(dx − by)2 +

1

∆2
(−cx + ay)2.

With some algebra, we can rewrite the right side to get

c2 + d2

∆2
x2 − 2

ac + bd

∆2
xy +

a2 + b2

∆2
y2 = 1.

This equation is in the form of Display (7) with

A =
c2 + d2

∆2
, B = −ac + bd

∆2
, and C =

a2 + b2

∆2
.

The geometry of the ellipse is determined by the eigenvalues and eigenvectors of

Q =
1

∆2

[

c2 + d2 −(ac + bd)
−(ac + bd) a2 + b2

]

. (11)

Exercise 5. Compute det Q for the matrix in Display (11). Show that detQ > 0 for
ad − bc 6= 0. This confirms that Display (10) does indeed parametrize an ellipse.

Example 2. We will determine the geometry of the ellipse given parametrically by

[

x(t)
y(t)

]

=

[

cos t − sin t
−2 cos t

]

. (12)

First, we can read off the values a = 1, b = −1, c = −1, and d = 0 by comparison
with the general form given in Display (10). From these, we form the matrix

Q =

[

1 1
2

1
2

1
2

]

.

Using technology, we find the eigenvalues and eigenvectors of Q are

α1 =
3 +

√
5

4
with ~u1 = 1√

10+2
√

5

[

1 +
√

5
2

]

and

α2 =
3 −

√
5

4
with ~u2 = 1√

10−2
√

5

[

1 −
√

5
2

]
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Figure 5: The ellipse of Example 2
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Figure 6: An elliptic spiral based on Example 2

Note that we have chosen unit eigenvectors so that S = [~u1, ~u2] is orthogonal as
required. Since the eigenvalues are both positive, we have an ellipse. The major axis is

in the direction ~u2 and the semi-major axis length is 1/
√

α1 = 2/
√

3 −
√

5. The minor

axis is in the direction ~u1 and the semi-minor axis length is 1/
√

α2 = 2/
√

3 +
√

5.
The ellipse is shown in Figure 5.

If the parametrization in Display (12) included an decaying exponential factor,
we would get an elliptic spiral as shown in Figure 6.


