Using antidifferentiation to get a power series representation

In this example, we will get a power series representation for $\tan ^{-1} x$ by antidifferentiating a known power series representation. Since

$$
\begin{equation*}
\frac{d}{d x}\left[\tan ^{-1} x\right]=\frac{1}{1+x^{2}} \tag{1}
\end{equation*}
$$

we know that

$$
\begin{equation*}
\tan ^{-1} x=\int \frac{1}{1+x^{2}} d x+C \tag{2}
\end{equation*}
$$

We also know that

$$
\begin{equation*}
\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}=1-x^{2}+x^{4}-x^{6}+\ldots \quad \text { for }-1<x<1 \tag{3}
\end{equation*}
$$

(Recall that we got this result by substituting $u=-x^{2}$ into the geometric series $\frac{1}{1-u}=\sum_{k=0}^{\infty} u^{k}$.) Substituting this series representation for $\frac{1}{1+x^{2}}$ into (2), we get

$$
\begin{equation*}
\tan ^{-1} x=\int \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} d x+C \tag{4}
\end{equation*}
$$

Theorem 20 in the text allows us to interchange the order of summation and integration in this to give

$$
\begin{equation*}
\tan ^{-1} x=\sum_{k=0}^{\infty} \int(-1)^{k} x^{2 k} d x+C \tag{5}
\end{equation*}
$$

We can move the constant factors out of the integral to get

$$
\begin{equation*}
\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \int x^{2 k} d x+C \tag{6}
\end{equation*}
$$

From the power rule, we know $\int x^{2 k} d x=\frac{1}{2 k+1} x^{2 k+1}$. Using this in (6) gives us

$$
\begin{equation*}
\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{2 k+1} x^{2 k+1}+C \tag{7}
\end{equation*}
$$

To evaluate the constant term C, we note that $\tan ^{-1} 0=0$. Thus $C=0$. So, we have

$$
\begin{equation*}
\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{2 k+1} x^{2 k+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots \tag{8}
\end{equation*}
$$

Further analysis reveals that this equality is valid for $-1 \leq x \leq 1$.

