Flow rate and accumulation

Consider a tank of water with a faucet and a drain. The volume of water in the tank can change at different rates depending on how the faucet and drain valves are set. There can be a net flow of water into the tank at some times and a net flow of water out of the tank at other times. Let t be time (measured in minutes) and f(t) be the rate of change in the volume of water in the tank (measured in gallons per minute). Note that a positive value for f(t) means that the volume of water in the tank is increasing and a negative value of f(t) means that the volume of water in the tank is decreasing.

1. The table below gives measured rates for various times in a five-minute interval. Use this data to estimate how much water accumulates in the tank during this five minute interval.

t	f(t)
(\min)	(gal/min)
0.0	3.96
1.0	14.52
2.0	19.60
3.0	9.74
4.0	1.78
5.0	0.12

2. The table below gives more data for the measured rates during the same five-minute time interval as 1. Use this data to estimate how much water accumulates in the tank during this five minute interval.

t	f(t)
(\min)	(gal/min)
0.0	3.96
0.5	8.60
1.0	14.52
1.5	19.12
2.0	19.60
2.5	15.65
3.0	9.74
3.5	4.71
4.0	1.78
4.5	0.52
5.0	0.12

3. Now consider recording the flow rate f(t) for all times between t = 0 and t = 5 minutes. We might get the data as a graph or as a formula (if the flow rate is controlled nicely). With information about the flow rate for all times in the interval, we should be able to compute the *exact* amount of water that accumulates in the tank during this five minute interval. Formulate a plan for this computation. The plots below correspond to the three scenarios on the flip side.

Right endpoint estimates