Flow rate and accumulation

Consider a tank of water with a faucet and a drain. The volume of water in the tank can change at different rates depending on how the faucet and drain valves are set. There can be a net flow of water into the tank at some times and a net flow of water out of the tank at other times. Let t be time (measured in minutes) and $f(t)$ be the rate of change in the volume of water in the tank (measured in gallons per minute). Note that a positive value for $f(t)$ means that the volume of water in the tank is increasing and a negative value of $f(t)$ means that the volume of water in the tank is decreasing.

1. The table below gives measured rates for various times in a five-minute interval. Use this data to estimate how much water accumulates in the tank during this five minute interval.

t (min)	$f(t)$ (gal/min)
0.0	3.96
1.0	14.52
2.0	19.60
3.0	9.74
4.0	1.78
5.0	0.12

2. The table below gives more data for the measured rates during the same five-minute time interval as 1. Use this data to estimate how much water accumulates in the tank during this five minute interval.

t $(\mathrm{~min})$	$f(t)$ (gal/min)
0.0	3.96
0.5	8.60
1.0	14.52
1.5	19.12
2.0	19.60
2.5	15.65
3.0	9.74
3.5	4.71
4.0	1.78
4.5	0.52
5.0	0.12

3. Now consider recording the flow rate $f(t)$ for all times between $t=0$ and $t=5$ minutes. We might get the data as a graph or as a formula (if the flow rate is controlled nicely). With information about the flow rate for all times in the interval, we should be able to compute the exact amount of water that accumulates in the tank during this five minute interval. Formulate a plan for this computation.

The plots below correspond to the three scenarios on the flip side.

Left endpoint estimates

\vdots
\vdots

Right endpoint estimates

