Euler's method problems with solutions

Note: You might find it helpful to record your results in a table as you proceed through the calculations for each problem.

1. With a step size of $\Delta t=0.2$, compute three steps of Euler's method to approximate the solution of $y^{\prime}=-0.3 y$ starting with $y=25$ for $t=1$.

Solution:

Calculations are shown in the following table.

Step	t	y	$\Delta y=-0.3 y \Delta t$
0	1	25	$-0.3(25)(0.2)=-1.5$
1	$1+0.2=1.2$	$25-1.5=23.5$	$-0.3(23.5)(0.2)=-1.41$
2	$1.2+0.2=1.4$	$23.5-1.41=22.09$	$-0.3(22.09)(0.2)=-1.3254$
3	$1.2+0.2=1.6$	$22.09-1.3254=20.7646$	

So, $y(1.6) \approx 20.76$.
2. With a step size of $\Delta x=0.1$, compute three steps of Euler's method to approximate the solution of $y^{\prime}(x)=e^{-x^{2}}$ starting with $y(0)=0$.

Solution:

Calculations are shown in the following table.

Step	x	y	$\Delta y=e^{-x^{2}} \Delta x$
0	0	0	$e^{-0^{2}}(0.1)=0.1$
1	$0+0.1=0.1$	$0+0.1=0.1$	$e^{-0.1^{2}}(0.1)=0.099$
2	$0.1+0.1=0.2$	$0.1+0.099=0.199$	$e^{-0.2^{2}}(0.1)=0.096$
3	$0.2+0.1=0.3$	$0.199+0.096=0.295$	

So, $y(0.3) \approx 0.295$.
3. With a step size of $\Delta t=0.4$, compute three steps of Euler's method to approximate the solution of $g^{\prime}(t)=t g(t)$ starting with $g(0)=5$.
Solution:
Calculations are shown in the following table.

Step	t	g	$\Delta g=t g \Delta t$
0	0	5	$(0)(5)(0.4)=0$
1	$0+0.4=0.4$	$5+0=5$	$(0.4)(5)(0.4)=0.8$
2	$0.4+0.4=0.8$	$5+0.8=5.8$	$(0.8)(5.8)(0.4)=1.856$
3	$0.8+0.4=1.2$	$5.8+1.856=7.656$	

So, $g(1.2) \approx 7.656$.
4. With a step size of $\Delta t=0.5$, compute ten steps of Euler's method to approximate the solution of $R^{\prime}=t-R$ starting with $R=3$ for $t=0$. Graph your computed points in a plot of R versus t.

Solution:

Calculations are shown in the following table.

Step	t	R	$\Delta R=(t-R) \Delta t$
0	0	3	$(0-3)(0.5)=-1.5$
1	$0+0.5=0.5$	$3-1.5=1.5$	$(0.5-1.5)(0.5)=-0.5$
2	$0.5+0.5=1.0$	$1.5-0.5=1.0$	$(1.0-1.0)(0.5)=0$
3	$1.0+0.5=1.5$	$1.0+0=1.0$	$(1.5-1.0)(0.5)=0.25$
4	$1.5+0.5=2.0$	$1.0+0.25=1.25$	$(2.0-1.25)(0.5)=0.375$
5	$2.0+0.5=2.5$	$1.25+0.375=1.625$	$(3.0-2.0625)(0.5)=0.4375$
6	$2.5+0.5=3.0$	$1.625+0.4375=2.0625$	$(3.5-2.53125)(0.5)=0.46875$
7	$3.0+0.5=3.5$	$2.0625+0.46875=2.53125$	$(4.0-3.015625)(0.5)=0.4921875$
8	$3.5+0.5=4.0$	$2.53125+0.484375=3.015625$	$(4.5-3.5078125)(0.5)=0.49609375$
9	$4.0+0.5=4.5$	$3.015625+0.4921875=3.5078125$	
10	$4.5+0.5=5.0$	$3.5078125+0.49609375=4.00390625$	

A plot of these results is shown below.

