An example of Euler's method

Given a differential equation that involves a function y and its derivative $d y / d t$, we can estimate the accumulation of y in small steps. To do this, we need an initial condition and we need to choose a step size.

Example 1 We will look at the differential equation

$$
\frac{d y}{d t}=0.2 y
$$

with the initial condition $y=100$ for $t=0$. We can rewrite the differential equation as

$$
d y=0.2 y d t
$$

This tells us that a small change $d y$ relates to a corresponding small change $d t$. If we look at a finite change Δt rather than an infinitesimal change $d t$, we get an approximation rather than an exact relation. In this case,

$$
\Delta y \approx 0.2 y \Delta t
$$

Now, starting with $y=100$ for $t=0$, we can compute the (approximate) change in y at $t=0$ as

$$
\Delta y \approx 0.2(100) \Delta t
$$

To get a specific value, we need to choose a step size Δt. Using $\Delta t=0.1$, we get

$$
\Delta y \approx 0.2(100)(0.1)=2
$$

We add this to the initial value for y to get $y \approx 100+2=102$ for $t=0+0.1=0.1$.
Using the new value of $y=102$ for $t=0.1$, we can compute a new (approximate) change in y. We get

$$
\Delta y \approx 0.2 y \Delta t=0.2(102)(0.1)=2.04
$$

With this, we get $y \approx 102+2.04=104.4$ for $t=0.1+0.1=0.2$.
We can continue this process indefinitely to get an approximate value for y at any value of t. To get an approximate value of y for $t=5$, we would need to compute a total of 50 steps using $\Delta t=0.1$. We could choose a larger value for Δt and therefore need fewer steps to get to $t=5$ but this would come with a loss in accuracy.

If we are going to compute a large number of steps, we might more conveniently organize our results in a table. The table below shows the calculations done above plus one additional step. The first column in the table tracks the step number n.

n	t	y	$\Delta y=0.2 y \Delta t$
0	0	100	$0.2(100)(0.1)=2$
1	$0+0.1=0.1$	$100+2=102$	$0.2(102)(0.1)=2.04$
2	$0.1+0.1=0.2$	$102+2.04=104.04$	$0.2(104.4)(0.1)=2.0808$
3	$0.2+0.1=0.3$	$104.04+2.0808=106.1208$	$0.2(106.1208)(0.1)=2.122416$

Doing these calculations by hand quickly becomes tedidous. This type of iterative calculation is easily implemented in a computer program or on a spreadsheet. The next page shows a spreadsheet calculation for 50 steps of this example along with a plot of the results. A spreadsheet like this can be easily set up using spreadsheet formulas.

