An example of Euler's method

Given a differential equation that involves a function y and its derivative dy/dt, we can estimate the accumulation of y in small steps. To do this, we need an initial condition and we need to choose a step size.

Example 1 We will look at the differential equation

$$\frac{dy}{dt} = 0.2y$$

with the initial condition y = 100 for t = 0. We can rewrite the differential equation as

$$dy = 0.2 \, y \, dt.$$

This tells us that a small change dy relates to a corresponding small change dt. If we look at a finite change Δt rather than an infinitesimal change dt, we get an approximation rather than an exact relation. In this case,

$$\Delta y \approx 0.2 \, y \, \Delta t.$$

Now, starting with y = 100 for t = 0, we can compute the (approximate) change in y at t = 0 as

$$\Delta y \approx 0.2(100)\Delta t.$$

To get a specific value, we need to choose a step size Δt . Using $\Delta t = 0.1$, we get

$$\Delta y \approx 0.2(100)(0.1) = 2.$$

We add this to the initial value for y to get $y \approx 100 + 2 = 102$ for t = 0 + 0.1 = 0.1.

Using the new value of y = 102 for t = 0.1, we can compute a new (approximate) change in y. We get

$$\Delta y \approx 0.2 \, y \, \Delta t = 0.2(102)(0.1) = 2.04.$$

With this, we get $y \approx 102 + 2.04 = 104.4$ for t = 0.1 + 0.1 = 0.2.

We can continue this process indefinitely to get an approximate value for y at any value of t. To get an approximate value of y for t = 5, we would need to compute a total of 50 steps using $\Delta t = 0.1$. We could choose a larger value for Δt and therefore need fewer steps to get to t = 5 but this would come with a loss in accuracy.

If we are going to compute a large number of steps, we might more conveniently organize our results in a table. The table below shows the calculations done above plus one additional step. The first column in the table tracks the step number n.

n	t	y	$\Delta y = 0.2 y \Delta t$
0	0	100	0.2(100)(0.1) = 2
1	0 + 0.1 = 0.1	100 + 2 = 102	0.2(102)(0.1) = 2.04
2	0.1 + 0.1 = 0.2	102 + 2.04 = 104.04	0.2(104.4)(0.1) = 2.0808
3	0.2 + 0.1 = 0.3	104.04 + 2.0808 = 106.1208	0.2(106.1208)(0.1) = 2.122416

Doing these calculations by hand quickly becomes tedidous. This type of iterative calculation is easily implemented in a computer program or on a spreadsheet. The next page shows a spreadsheet calculation for 50 steps of this example along with a plot of the results. A spreadsheet like this can be easily set up using spreadsheet formulas.

$y(0) = y_0$											~					<u> 1</u> .			٠												3.0 4.0 5.0 6.0												
Euler's method for $y' = ky$ with $y(0)$		k= 0.2	y0= 100	nt= 0.1									300.00			250.00			200.00			150.00			100.00						0.0 1.0 2.0												
E	dy	2.0000	2.0400	2.1224	2.1649	2.2082	2.2523	2.2974	2.3433	2.3902	2.4380	2.4867	2022.2	2/86.2	2,6917	2.7456	2.8005	2.8565	2.9136	3.0313	3.0920	3.1538	3.2169	3.2812	3.4138	3.4820	3.5517	3.6227	3 7691	3.8445	3.9214	3.9998	4.0/98	4.1014	4.3295	4.4161	4.5044	4.5945	4.6864	4./801	4.9732	5.0727	
	٨	100.00	102.00	106.12	108.24	110.41	112.62	114.87	117.17	119.51	121.90	124.34	120.82	129.30	134.59	137.28	140.02	142.82	145.68	151 57	154.60	157.69	160.84	164.06	170.69	174.10	177.58	181.14	188 45	192.22	196.07	199.99	203.99	208.07	216.47	220.80	225.22	229.72	234.32	239.01	248.66	253.63	
		0.0	0.1	0.2	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	7.7 7	1.3	1.5	1.6	1.7	1.8	1.9	2.0	2.2	2.3	2.4	2.5	2.7	2.8	2.9	3.0	3.1	1 C. C.	3.4	3.5	0.0 7.0	3.7	3.9	4.0	4.1	4.2		4.4	4.6	4.7	
	Step	0	-1 c	<u>v</u> m	0 4	- 2	9	7	8	6	10	11	71 ;	13	15	16	17	18	19	20	22	23	24	25	27	28	29	30	32	33.5	34	35	36	3/ 38	39	40	41	42	43	44	46	47	: