Big ideas from Calculus I

1. Make a conjecture about $\lim_{x\to 0} \frac{\sin x}{x}$ and provide evidence to support your conjecture. (Note: For this problem, assume you do not yet know about derivatives and thus cannot use L'Hopital's rule.)

2. Evaluate the limit $\lim_{x \to 4} \frac{x-4}{x^2-16}$

3. Evaluate
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}.$$

4. State the definition of *derivative*.

5. Use the definition to compute the derivative of $f(x) = x^2$. (Hint: Refer to your work in Problem 3.)

- 6. For each of the following functions, give or compute the derivative.
 - (a) $f(x) = 4x^3 + 5x^2 2x + 7$ (b) $f(x) = \sin x$ (c) $f(x) = \cos x$ (e) $f(t) = t^2 \sin t$ (f) $g(x) = \cos(x^2)$ (g) $w(y) = e^{\sin y}$
 - (d) $f(x) = e^x$ (h) $h(x) = \sqrt{x^2 + 1}$
- 7. Determine the slope of the line tangent to the graph of $f(x) = 6x^3 2x$ for x = 3.
- 8. Determine all values of x for which the graph of $f(x) = 6x^3 2x$ has a horizontal tangent line.
- 9. The volume V (in gallons) of water in a tank is given as a function of time t (in hours) by $V = 100 + 20e^{-0.2t}$. Determine the rate at which water flows in or out of the tank for t = 4 hr.
- 10. Find all functions that have $f(x) = x^4 + 6x^3 + \sin x$ as derivative.
- 11. Find the antiderivative F(x) of $f(x) = 12x^3$ that satisfies F(1) = 5.
- 12. An object moving along a line has a velocity of 3 m/s at t = 0 s. The object's acceleration for t > 0 is given by a(t) = 6t. Find the velocity function for this object.