Limit of a sequence

We want to write down a precise definition of what it means to say a sequence has a limit (and thus is convergent). As example, the sequence $\{1 / n\}=\{1,1 / 2,1 / 3,1 / 4, \ldots\}$ is convergent with the limit 0 . We begin with an informal idea.

Rough idea: The number A is the limit of the sequence $\left\{a_{n}\right\}$ if, as n gets large, the elements a_{n} "settle down" so that A is the only reasonable value at "the end of the list".

To make this precise, we quantify what we mean by "large" values of the index n and we quantify what we mean by "settle down". We will use N to denote a specific index value that counts as "large". We will use ϵ to denote a measure of how close a_{n} is to A.

Precise idea: The number A is the limit of the sequence $\left\{a_{n}\right\}$ if for any positive measure ϵ, there is an index value N beyond which all elements a_{n} are within ϵ of A.

We can use inequalities to express this more compactly (and in a way that is easier to manipulate mathematically). Rather than writing "positive measure ϵ ", we use $\epsilon>0$. In place of writing "index value N beyond which", we use $n>N$. Finally, rather than writing "elements a_{n} are within ϵ of A, we use $\left|a_{n}-A\right|<\epsilon$.

Compact version: The number A is the limit of the sequence $\left\{a_{n}\right\}$ if for any $\epsilon>0$, there is an index value N so that $n>N$ implies $\left|a_{n}-A\right|<\epsilon$.

Example: To prove that $A=0$ is the limit of $\left\{a_{n}\right\}=\{1 / n\}$, we start by considering a fixed value of $\epsilon>0$. So ϵ is a given from which we need to construct (or show the existence of) an appropriate value of N. We need to find N to guarantee that $n>N$ implies $a_{n}-A \mid<\epsilon$. In this case, we need $|1 / n-0|<\epsilon$. This is equivalent to $n>1 / \epsilon$. So, any integer bigger than $1 / \epsilon$ will work as a value of N. To be specific, we can choose N to be the smallest integer that is larger than $1 / \epsilon$.
So, given any $\epsilon>0$, we choose N to be the smallest integer larger than $1 / \epsilon$ to have $N>1 / \epsilon$. If $n>N$, then $1 / n<1 / N<\epsilon$. So $1 / n<\epsilon$ which is equivalent to $|1 / n-0|<\epsilon$. Therefore 0 is the limit of $\{1 / n\}$.

