Extending the idea of definite integral

1. (a) Evaluate $\int_{1}^{b} \frac{1}{x^{2}} d x$ for $b>1$.
(b) Sketch a plot illustrating an area interpretation of your result from (a).
(c) Evaluate the limit of your result from (a) as $b \rightarrow \infty$.
(d) Sketch a plot illustrating an area interpretation of your result in (c).
2. (a) Evaluate $\int_{1}^{b} \frac{1}{x} d x$ for $b>1$.
(b) Sketch a plot illustrating an area interpretation of your result from (a).
(c) Evaluate the limit of your result from (a) as $b \rightarrow \infty$.
(d) Sketch a plot illustrating an area interpretation of your result in (c).
3. (a) Set up an inequality comparing x^{2} and $x^{2}+1$ for $x>1$.
(b) Set up an inequality comparing $\frac{1}{x^{2}}$ and $\frac{1}{x^{2}+1}$ for $x>1$.
(c) Set up an inequality comparing $\int_{1}^{b} \frac{1}{x^{2}} d x$ and $\int_{1}^{b} \frac{1}{x^{2}+1} d x$.
(d) Use your inequality from (c) and your result from Problem 1(c) to reach a conclusion about $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}+1} d x$. (Note: This conclusion will be in the form of an upper bound on the value of the limit rather than the exact value of the limit.)
(e) Sketch a plot illustrating an area interpretation of your result in (d).
4. (a) Set up an inequality comparing x and \sqrt{x} for $x>1$.
(b) Set up an inequality comparing $\frac{1}{x}$ and $\frac{1}{\sqrt{x}}$ for $x>1$.
(c) Set up an inequality comparing $\int_{1}^{b} \frac{1}{x} d x$ and $\int_{1}^{b} \frac{1}{\sqrt{x}} d x$.
(d) Use your inequality from (c) and your result from Problem 2(c) to reach a conclusion about $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{\sqrt{x}} d x$.
(e) Sketch a plot illustrating an area interpretation of your result in (d).
