Constructing definite integrals

- 1. Consider the problem of computing the total mass of a column of air. The density of air decreases as height above sea level increases. Let h be height above sea level measured in meters (m). Let ρ be the density of air, measured in kilograms per cubic meter (kg/m³). Note that ρ varies with height h. (Here, ρ is the lower case Greek letter "rho".)
 - (a) Construct a definite integral to compute the total mass of air in a cylindrical column of radius R and height H with its base at sea level.
 - (b) Compute the total mass of air if $\rho(h) = \rho_0 e^{-kh}$ where ρ_0 and k are positive constants.
 - (c) Get a numerical value for the total mass using the values $\rho_0 = 1.22 \text{ kg/m}^3$, $k = 1.1 \times 10^{-4} \text{ m}^{-1}$, R = 1 m and H = 10000 m.
- 2. Consider the problem of computing the total number of bacteria in a circular petri dish. The bacteria colony is more dense at the center than at the edges of the petri dish. Let r denote radial distance from the center of the dish measured in centimeters (cm). Let σ be the density of the bacteria colony, measured in number per square centimeter ($\#/\text{cm}^2$). Note that σ varies with radius r. (Here, σ is the lower case Greek letter "sigma".)
 - (a) Construct a definite integral to compute the total number of bacteria in a petri dish of radius R.
 - (b) Compute the total number of bacteria if the density is σ_0 at the center of the dish and decreases linearly to zero at the edge of the dish.
 - (c) Get a numerical value for the total number with the density as in (b) and the values $\sigma_0 = 5.4 \times 10^3$ per cm² and R = 5.5 cm.
- 3. Here is a fact about continuously compounded interest: An amount A (in dollars) in an account earning interest at a continuously compounded rate r (in % per year) has a value after τ years of $Ae^{r\tau}$.

Consider the problem of computing the future value of deposits in an investment account. Money is deposited into the account at a known rate and the account earns interest compounded continuously. Let t be a time in years and δ be the deposit rate (in dollars per year). Note that δ can vary with time t.

- (a) Construct a definite integral to compute the value of an account T years in the future.
- (b) Compute the future value if the deposit rate is a constant δ_0 in dollars per year.
- (c) Get a numerical value for the future value at 5 years with a constant deposit rate of \$1000 per year and an interest rate of 6%. Of this, how much is earned interest?