Toward a precise definition of limit

Warm-up 2: Hitting a target

1. Consider the function $f(x)=4 x$ for x near $a=3$.
(a) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 1 of 12 . That is, $f(x)$ must be between 11 and 13 .
(b) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 0.5 of 12 .
(c) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 0.2 of 12 .
(d) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within ε of 12 . Note: In this part, the "target radius" is a variable. You should expect your "launch pad radius" to depend on ε.
2. Consider the function $f(x)=x^{2}$ for x near $a=3$.
(a) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 1 of 9 . That is, $f(x)$ must be between 8 and 10 .
(b) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 0.5 of 9 .
(c) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within 0.2 of 9 .
(d) Find all inputs x near $a=3$ such that the outputs $f(x)$ are within ε of 9 .
