For each of $x=-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0$ estimate the slope of the tangent line on the graph of $f(x)=e^{x}$ and plot this value on the axes below for the graph of $f^{\prime}(x)$. Finally, draw a curve through the points you've plotted for $f^{\prime}(x)$ and make a conjecture about what this function is.

For each of $x=0, \frac{\pi}{8}, \frac{\pi}{4}, \frac{3 \pi}{8}$ and $\frac{\pi}{2}$, estimate the slope of the tangent line on the graph of $f(x)=\sin (x)$ and plot this value on the axes below for the graph of $f^{\prime}(x)$. Then use symmetery to determine estimates of tangent line slopes for other multiples of $\frac{\pi}{8}$ up to 2π. Finally, draw a curve through the points you've plotted for $f^{\prime}(x)$ and make a conjecture about what this function is.

