Defining definite integral

Equal size subintervals: Given a function f defined for the interval $[a, b]$, construct a Riemann sum in the following way:

- Partition the interval $[a, b]$ into n subintervals of equal size $\Delta x=\frac{b-a}{n}$.
- Label the subintervals with the index $k=1,2,3, \ldots, n$.
- Choose an input c_{k} in each subinterval (e.g., left endpoints, right endpoints, midpoints, ...).
- Form the Riemann sum $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x$.

If $\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$ exists with the same value for all choices of inputs c_{k}, we say f is integrable for $[a, b]$ and we denote the limit $\int_{a}^{b} f(x) d x$. We call this number the definite integral of f for $[a, b]$.
Note: Taking $\Delta x \rightarrow 0$ is equivalent to $n \rightarrow \infty$ since $\Delta x=\frac{b-a}{n}$.

General subintervals (basic idea): Given a function f defined for the interval $[a, b]$, construct a Riemann sum in the following way:

- Partition the interval $[a, b]$ into n subintervals by picking a set of endpoints $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $x_{0}=a$ and $x_{n}=b$ and $x_{k-1}<x_{k}$.
- Label the subintervals with the index $k=1,2,3, \ldots, n$.
- Compute the size of each subinterval as $\Delta x_{k}=x_{k}-x_{k-1}$.
- Determine the size of the largest interval and denote this $\|P\|$. This number is called the norm of the partition P.
- Choose an input c_{k} in each subinterval (e.g., left endpoints, right endpoints, midpoints, ...).
- Form the Riemann sum $\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=f\left(c_{1}\right) \Delta x_{1}+f\left(c_{2}\right) \Delta x_{2}+\cdots+f\left(c_{n}\right) \Delta x_{n}$. If $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}$ exists with the same value for all partitions P and all choices of inputs c_{k}, we say f is integrable for $[a, b]$ and we denote the limit $\int_{a}^{b} f(x) d x$. We call this number the definite integral of f for $[a, b]$.
Note: What we mean by the limit as $\|P\| \rightarrow 0$ is not clear here.

Precise definition of limit as $\|P\| \rightarrow 0$: We want to formulate a precise definition of the statement

$$
\lim _{\|P\| \rightarrow 0} \sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}=I
$$

For this, we go back to the ideas of target, launch pad, and successful launch pad.
A target around I is simply an open interval centered at I. We'll typically use ϵ to denote the "radius" of this interval on either side of I. So, a target with radius ϵ is just the open interval from $I-\epsilon$ to $I+\epsilon$. A Riemann sum $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ is in this target if

$$
I-\epsilon<\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}<I+\epsilon \quad \text { which is the same as } \quad\left|\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}-I\right|<\epsilon
$$

A launch pad in this context is simply an open interval $(0, \delta)$. The norm $\|P\|$ of a partition is in this launch pad if $\|P\|<\delta$.
With $f,[a, b]$, and I specified, we can pick a target and then look at a launch pad. For a given target, a launch pad is successful if every partition P with $\|P\|$ in the launch pad has Riemann sum $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ in the target for all choices of inputs c_{k}. A launch pad is not successful if there is any partition P with norm $\|P\|$ in that launch pad for which the Riemann sum $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ is not in the target for some choice of inputs c_{k}.

Definition (Version 1): The number I is the limit of $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ as $\|P\| \rightarrow 0$ if for each target around I, there is a successful launch pad.

Definition (Version 2): The number I is the limit of $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ as $\|P\| \rightarrow 0$ if for each $\epsilon>0$ [that is, for each possible target radius], there is a corresponding number $\delta>0$ [that is, a launch pad radius] such that

$$
\|P\|<\delta \quad \text { implies } \quad\left|\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}-I\right|<\epsilon
$$

for all choices of inputs c_{k} [that is, each partition P with norm $\|P\|$ in the launch pad has $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ in the target for all choices of inputs c_{k} so the launch pad is successful].

Here's a final version with the commentary removed.
Definition (Version 3): The number I is the limit of $\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}$ as $\|P\| \rightarrow 0$ if for each $\epsilon>0$, there is a corresponding number $\delta>0$ such that

$$
\|P\|<\delta \quad \text { implies } \quad\left|\sum_{k}^{n} f\left(c_{k}\right) \Delta x_{k}-I\right|<\epsilon
$$

for all choices of inputs c_{k}.

