Defining definite integral

Equal size subintervals: Given a function f defined for the interval [a, b], construct a *Riemann sum* in the following way:

- Partition the interval [a, b] into n subintervals of equal size $\Delta x = \frac{b-a}{n}$.
- Label the subintervals with the index $k = 1, 2, 3, \ldots, n$.
- Choose an input c_k in each subinterval (e.g., left endpoints, right endpoints, midpoints, ...).

• Form the Riemann sum
$$\sum_{k=1}^{n} f(c_k) \Delta x = f(c_1) \Delta x + f(c_2) \Delta x + \dots + f(c_n) \Delta x$$
.

If $\lim_{\Delta x \to 0} \sum_{k=1}^{n} f(c_k) \Delta x$ exists with the same value for all choices of inputs c_k , we say f

is *integrable* for [a, b] and we denote the limit $\int_{a}^{b} f(x) dx$. We call this number the *definite integral of f for* [a, b].

Note: Taking $\Delta x \to 0$ is equivalent to $n \to \infty$ since $\Delta x = \frac{b-a}{n}$.

General subintervals (basic idea): Given a function f defined for the interval [a, b], construct a *Riemann sum* in the following way:

- Partition the interval [a, b] into n subintervals by picking a set of endpoints $P = \{x_0, x_1, x_2, \ldots, x_n\}$ with $x_0 = a$ and $x_n = b$ and $x_{k-1} < x_k$.
- Label the subintervals with the index k = 1, 2, 3, ..., n.
- Compute the size of each subinterval as $\Delta x_k = x_k x_{k-1}$.
- Determine the size of the largest interval and denote this ||P||. This number is called the *norm* of the partition P.
- Choose an input c_k in each subinterval (e.g., left endpoints, right endpoints, midpoints, ...).

• Form the Riemann sum
$$\sum_{k=1}^{n} f(c_k) \Delta x_k = f(c_1) \Delta x_1 + f(c_2) \Delta x_2 + \dots + f(c_n) \Delta x_n.$$

If $\lim_{\|P\|\to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k$ exists with the same value for all partitions P and all choices

of inputs c_k , we say f is *integrable* for [a, b] and we denote the limit $\int_a^b f(x) dx$. We call this number the *definite integral of* f for [a, b].

Note: What we mean by the limit as $||P|| \to 0$ is not clear here.

Precise definition of limit as $||P|| \rightarrow 0$: We want to formulate a precise definition of the statement

$$\lim_{\|P\|\to 0}\sum_{k}^{n}f(c_k)\Delta x_k=I.$$

For this, we go back to the ideas of target, launch pad, and successful launch pad.

A *target* around I is simply an open interval centered at I. We'll typically use ϵ to denote the "radius" of this interval on either side of I. So, a target with radius ϵ is just the open interval from $I - \epsilon$ to $I + \epsilon$. A Riemann sum $\sum_{k=1}^{n} f(c_k) \Delta x_k$ is in this target if

$$I - \epsilon < \sum_{k}^{n} f(c_k) \Delta x_k < I + \epsilon$$
 which is the same as $|\sum_{k}^{n} f(c_k) \Delta x_k - I| < \epsilon$.

A launch pad in this context is simply an open interval $(0, \delta)$. The norm ||P|| of a partition is in this launch pad if $||P|| < \delta$.

With f, [a, b], and I specified, we can pick a target and then look at a launch pad. For a given target, a launch pad is *successful* if every partition P with ||P|| in the launch pad has Riemann sum $\sum_{k}^{n} f(c_k) \Delta x_k$ in the target for all choices of inputs c_k . A launch pad is *not* successful if there is any partition P with norm ||P|| in that launch pad for which the Riemann sum $\sum_{k}^{n} f(c_k) \Delta x_k$ is not in the target for some choice of inputs c_k .

Definition (Version 1): The number I is the limit of $\sum_{k=1}^{n} f(c_k) \Delta x_k$ as $||P|| \to 0$ if for each target around I, there is a successful launch pad.

Definition (Version 2): The number I is the limit of $\sum_{k}^{n} f(c_k) \Delta x_k$ as $||P|| \to 0$ if for each $\epsilon > 0$ [that is, for each possible target radius], there is a corresponding number $\delta > 0$ [that is, a launch pad radius] such that

$$||P|| < \delta$$
 implies $|\sum_{k}^{n} f(c_k)\Delta x_k - I| < \epsilon$

for all choices of inputs c_k [that is, each partition P with norm ||P|| in the launch pad has $\sum_{k=1}^{n} f(c_k) \Delta x_k$ in the target for all choices of inputs c_k so the launch pad is successful].

Here's a final version with the commentary removed.

Definition (Version 3): The number I is the limit of $\sum_{k=1}^{n} f(c_k) \Delta x_k$ as $||P|| \to 0$ if for each $\epsilon > 0$, there is a corresponding number $\delta > 0$ such that

$$||P|| < \delta$$
 implies $|\sum_{k}^{n} f(c_k)\Delta x_k - I| < \epsilon$

for all choices of inputs c_k .