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Defining definite integral

Equal size subintervals: Given a function f defined for the interval [a, b], con-
struct a Riemann sum in the following way:

• Partition the interval [a, b] into n subintervals of equal size ∆x =
b− a
n

.

• Label the subintervals with the index k = 1, 2, 3, . . . , n.

• Choose an input ck in each subinterval (e.g., left endpoints, right endpoints,
midpoints, . . . ).

• Form the Riemann sum
n∑

k=1

f(ck)∆x = f(c1)∆x+ f(c2)∆x+ · · ·+ f(cn)∆x.

If lim
∆x→0

n∑
k=1

f(ck)∆x exists with the same value for all choices of inputs ck, we say f

is integrable for [a, b] and we denote the limit

∫ b

a

f(x) dx. We call this number the

definite integral of f for [a, b].

Note: Taking ∆x→ 0 is equivalent to n→∞ since ∆x =
b− a
n

.

General subintervals (basic idea): Given a function f defined for the interval
[a, b], construct a Riemann sum in the following way:

• Partition the interval [a, b] into n subintervals by picking a set of endpoints
P = {x0, x1, x2, . . . , xn} with x0 = a and xn = b and xk−1 < xk.

• Label the subintervals with the index k = 1, 2, 3, . . . , n.

• Compute the size of each subinterval as ∆xk = xk − xk−1.

• Determine the size of the largest interval and denote this ‖P‖. This number is
called the norm of the partition P .

• Choose an input ck in each subinterval (e.g., left endpoints, right endpoints,
midpoints, . . . ).

• Form the Riemann sum
n∑

k=1

f(ck)∆xk = f(c1)∆x1 +f(c2)∆x2 + · · ·+f(cn)∆xn.

If lim
‖P‖→0

n∑
k=1

f(ck)∆xk exists with the same value for all partitions P and all choices

of inputs ck, we say f is integrable for [a, b] and we denote the limit

∫ b

a

f(x) dx. We

call this number the definite integral of f for [a, b].

Note: What we mean by the limit as ‖P‖ → 0 is not clear here.



Precise definition of limit as ‖P‖ → 0: We want to formulate a precise definition
of the statement

lim
‖P‖→0

n∑
k

f(ck)∆xk = I.

For this, we go back to the ideas of target, launch pad, and successful launch pad.

A target around I is simply an open interval centered at I. We’ll typically use ε to
denote the “radius” of this interval on either side of I. So, a target with radius ε is
just the open interval from I − ε to I + ε. A Riemann sum

∑n
k f(ck)∆xk is in this

target if

I − ε <
n∑
k

f(ck)∆xk < I + ε which is the same as |
n∑
k

f(ck)∆xk − I| < ε.

A launch pad in this context is simply an open interval (0, δ). The norm ‖P‖ of a
partition is in this launch pad if ‖P‖ < δ.

With f , [a, b], and I specified, we can pick a target and then look at a launch pad.
For a given target, a launch pad is successful if every partition P with ‖P‖ in the
launch pad has Riemann sum

∑n
k f(ck)∆xk in the target for all choices of inputs ck.

A launch pad is not successful if there is any partition P with norm ‖P‖ in that
launch pad for which the Riemann sum

∑n
k f(ck)∆xk is not in the target for some

choice of inputs ck.

Definition (Version 1): The number I is the limit of
n∑
k

f(ck)∆xk as ‖P‖ → 0 if

for each target around I, there is a successful launch pad.

Definition (Version 2): The number I is the limit of
n∑
k

f(ck)∆xk as ‖P‖ → 0

if for each ε > 0 [that is, for each possible target radius], there is a corresponding
number δ > 0 [that is, a launch pad radius] such that

‖P‖ < δ implies |
n∑
k

f(ck)∆xk − I| < ε

for all choices of inputs ck [that is, each partition P with norm ‖P‖ in the launch
pad has

∑n
k f(ck)∆xk in the target for all choices of inputs ck so the launch pad is

successful].

Here’s a final version with the commentary removed.

Definition (Version 3): The number I is the limit of
n∑
k

f(ck)∆xk as ‖P‖ → 0 if

for each ε > 0, there is a corresponding number δ > 0 such that

‖P‖ < δ implies |
n∑
k

f(ck)∆xk − I| < ε

for all choices of inputs ck.


