Introducing the chain rule

Consider having a gas in a cylinder with an adjustable piston so that we can control or measure quantities such as volume V, pressure p, temperature T, and the number of gas atoms/molecules n. Each of these quantities has units as given in the table below.

Quantity	Units
volume V	liter (L)
pressure p	atmosphere (atm)
temperature T	Kelvin (K)
number n	mol

We'll assume that these quantities are related by the ideal gas law

$$
p V=n R T
$$

where R is a constant with value $R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}$.
Let's consider a specific situation in which we keep the number of gas particles constant at $n=1 \mathrm{~mol}$ and the temperature constant at $T=300 \mathrm{~K}$. We can then think of volume as a function of pressure. We can solve to get

$$
V=n R T \cdot \frac{1}{p}
$$

where $n R T$ is a constant in the context we've set up.
To get the rate of change in volume with respect to pressure, we compute the derivative $d V / d p$ and get

$$
\frac{d V}{d p}=-n R T \cdot \frac{1}{p^{2}}
$$

We can input a specific value of pressure to get a specific rate of change. For example, at pressure $p=1.09 \mathrm{~atm}$, we get

$$
\left.\frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}}=-(1 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K}) \frac{1}{(1.09 \mathrm{~atm})^{2}}=-20.72 \frac{\mathrm{~L}}{\mathrm{~atm}}
$$

Now, let's introduce time t as a new variable with t measured in minutes (min). Imagine that we control pressure over time. To be specific, suppose we control pressure so that

$$
p=p_{0}+a t^{2}
$$

with constants $p_{0}=1 \mathrm{~atm}$ and $a=0.01 \frac{\mathrm{~atm}}{\mathrm{~min}^{2}}$. To get the rate of change in pressure with respect to time, we compute

$$
\frac{d p}{d t}=0+a(2 t)=2 a t
$$

Now focus on a specific time, say $t=3 \mathrm{~min}$. For $t=3 \mathrm{~min}$, the pressure has the value

$$
p=1 \mathrm{~atm}+\left(0.01 \frac{\mathrm{~atm}}{\mathrm{~min}^{2}}\right)(3 \mathrm{~min})^{2}=1.09 \mathrm{~atm} .
$$

(Note that this is the value of pressure we used above. This is not a coincidence.) At this specific time, the pressure is changing with respect to time at the rate

$$
\left.\frac{d p}{d t}\right|_{t=3 \min }=2\left(0.01 \frac{\mathrm{~atm}}{\mathrm{~min}^{2}}\right)(3 \mathrm{~min})=0.06 \frac{\mathrm{~atm}}{\min }
$$

Here's the main question: How do we combine

$$
\left.\frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}}=-20.72 \frac{\mathrm{~L}}{\mathrm{~atm}} \quad \text { and }\left.\quad \frac{d p}{d t}\right|_{t=3 \min }=0.06 \frac{\mathrm{~atm}}{\mathrm{~min}}
$$

to get the rate of change in volume with respect to time at $t=3 \mathrm{~min}$? In other words, how do we get

$$
\left.\frac{d V}{d t}\right|_{t=3 \min }
$$

from

$$
\left.\frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}}=-20.72 \frac{\mathrm{~L}}{\mathrm{~atm}} \quad \text { and }\left.\quad \frac{d p}{d t}\right|_{t=3 \min }=0.06 \frac{\mathrm{~atm}}{\min }
$$

Looking at units makes it reasonable to conjecture that we should multiply to get

$$
\left.\frac{d V}{d t}\right|_{t=3 \min }=\left.\left.\frac{d V}{d p}\right|_{p=1.09 \mathrm{~atm}} \cdot \frac{d p}{d t}\right|_{t=3 \min }=-20.72 \frac{\mathrm{~L}}{\mathrm{~atm}} \cdot 0.06 \frac{\mathrm{~atm}}{\min }=-1.2432 \frac{\mathrm{~L}}{\mathrm{~min}}
$$

This is, in fact, correct. We'll justify this more completely later.
The rule that says

$$
\frac{d V}{d t}=\frac{d V}{d p} \frac{d p}{d t}
$$

is called the chain rule. For our example, we have

$$
\frac{d V}{d t}=\frac{d V}{d p} \frac{d p}{d t}=-n R T \frac{1}{p^{2}} \cdot 2 a t .
$$

To get the specific value for $t=3 \mathrm{~min}$, we need to substitute in $t=3 \mathrm{~min}$ and we need to substitute in $p=1.09 \mathrm{~atm}$ since that is the value of pressure for $t=3 \mathrm{~min}$. Putting in these values (and the values of all our constants), we have
$\left.\frac{d V}{d t}\right|_{t=3 \text { min }}=-(1 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K}) \frac{1}{(1.09 \mathrm{~atm})^{2}}(2)\left(0.01 \frac{\mathrm{~atm}}{\mathrm{~min}^{2}}\right)(3 \mathrm{~min})=-1.2432 \frac{\mathrm{~L}}{\mathrm{~min}}$
In mathematical terms, the chain rule is used for differentiating a composition. Let's express the chain rule in the "prime" notation for dervivatives. First, use function notation to write

$$
V(p)=n R T \cdot \frac{1}{p} \quad \text { and } \quad p(t)=p_{0}+a t^{2}
$$

To write volume V as a function of time t, we compose these to get

$$
(V \circ p)(t)=V(p(t))=n R T \cdot \frac{1}{p(t)}=n R T \cdot \frac{1}{p_{0}+a t^{2}}
$$

The chain rule tells us that to differentiate the composition $V \circ p$, we multiply the derivatives of V and p. Specifically,

$$
(V \circ p)^{\prime}(t)=V^{\prime}(p(t)) \cdot p^{\prime}(t)
$$

If you are not comfortable with the notation $V \circ p$, you could express the same rule as

$$
\frac{d}{d t}[V(p(t))]=V^{\prime}(p(t)) \cdot p^{\prime}(t)
$$

Our first example is complicated by the fact that we had to keep track of units in order to let units guide us to a conjecture. Let's forget units and look at an example without context. Suppose we want to differentiate $f(x)=\sin \left(x^{2}\right)$. We can think of this as a composition of the functions $u=\sin (v)$ and $v=x^{2}$. So $f(x)=u(v(x))$ and the derivative of f is

$$
\frac{d f}{d x}=\frac{d u}{d v} \frac{d v}{d x}=\cos (v) \cdot 2 x=2 x \cos (v)
$$

As a final step, we can substitute $v=x^{2}$ to get

$$
\frac{d f}{d x}=2 x \cos \left(x^{2}\right)
$$

Here's the same calculation using the "prime" notation:

$$
f^{\prime}(x)=u^{\prime}(v(x)) \cdot v^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right)
$$

Here are two key things to note about the chain rule

- We multiply the derivatives of u and v.
- The derivative of u is evaluated at $v(x)$.

