Probability for proportions in a simple random sample

- categorical variable with values "success" and "failure"
- population with proportion p of successes and proportion $1-p$ of failures
- draw SRS of size n and measure success or failure on each subject
- if population is large compared to n, then a good probability model for the count X of successes is the binomial distribution $B(n, p)$
- for a random variable X with binomial distribution $B(n, p)$, have

$$
\mu_{X}=n p \quad \sigma_{X}^{2}=n p(1-p) \quad \sigma_{X}=\sqrt{n p(1-p)}
$$

- another random variable is the sample proportion \hat{p} for each value of X
- \hat{p} and X are related by $\hat{p}=\frac{X}{n}=\frac{1}{n} X$
- can get mean and standard deviation for \hat{p} from mean and standard deviation for X :

$$
\begin{gathered}
\mu_{\hat{p}}=\frac{1}{n} \mu_{X}=\frac{1}{n} n p=p \\
\sigma_{\hat{p}}^{2}=\frac{1}{n^{2}} \sigma_{X}^{2}=\frac{1}{n^{2}} n p(1-p)=\frac{p(1-p)}{n} \\
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
\end{gathered}
$$

- $\mu_{\hat{p}}=p$ tells us \hat{p} is an unbiased estimator of p
- $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ tells us we can make variability in \hat{p} small by making n big

