- if X has the binomial distribution $B(n, p)$, then

$$
\mu_{X}=n p \quad \text { and } \quad \sigma_{X}=\sqrt{n p(1-p)}
$$

- compare $B(n, p)$ with the normal distribution that has this mean and standard deviation: $N(n p, \sqrt{n p(1-p)})$

Example:

For $B(5,0.2)$, have $\mu_{X}=1$ and $\sigma_{X}=\sqrt{0.8}=0.894$. $N(1,0.984)$ is not a good approximation of $B(5,2)$.

Example:

For $B(100,0.3)$, have $\mu_{X}=30$ and $\sigma_{X}=\sqrt{6.3}=2.51$. $N(30,2.51)$ is a good approximation of $B(100,0.3)$.

