Confidence intervals

- consider SAT scores (math+verbal) with normal distribution having mean $\mu=1026$ and standard deviation $\sigma=209$
- for SRSs of size $n=100$, sample means \bar{x} have normal distribution with

$$
\begin{aligned}
\text { mean } & \mu_{\bar{x}}=\mu=1026 \\
\text { standard deviation } & \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=20.9
\end{aligned}
$$

- 95% of all sample means \bar{x} fall within $2 \sigma_{\bar{x}}=2(20.9)=41.8$ of $\mu_{\bar{x}}=1026$

- since $\mu_{\bar{x}}=\mu=1026$, we can say that 95% of all sample means \bar{x} fall within $2 \sigma_{\bar{x}}=41.8$ of the population mean μ
- so, μ is within $2 \sigma_{\bar{x}}=41.8$ of 95% of all possible values of \bar{x}
- now think about all of the intervals of the form

$$
\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]=[\bar{x}-41.8, \bar{x}+41.8] \text { or } \bar{x} \pm 41.8
$$

- μ must fall into 95% of these intervals
- these intervals are called 95% confidence intervals
- in practice,

- select one SRS

- measure to get one sample mean
- construct one confidence interval
- report that confidence interval
- want information on value of a mean μ for a population
- select a SRS of size n and measure sample mean \bar{x}
- suppose sample means are normally distributed with mean $\mu_{\bar{x}}$ and standard deviation $\sigma_{\bar{x}}$
- 95% of all sample means \bar{x} fall within $2 \sigma_{\bar{x}}$ of $\mu_{\bar{x}}$
- since $\mu_{\bar{x}}=\mu$, we can say that 95% of all sample means \bar{x} fall within $2 \sigma_{\bar{x}}$ of the population mean μ
- so, μ is within $2 \sigma_{\bar{x}}$ of 95% of all possible values of \bar{x}
- now think about all of the intervals of the form $\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]$
- μ must fall into 95% of these intervals
- these intervals are called 95% confidence intervals
- for any one SRS with \bar{x}, it is tempting to say that there is probability 95% that the interval $\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]$ contains μ
- but, for any one SRS with \bar{x}, the 95% confidence interval $\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]$ either contains μ or does not contain μ so no probability statement applies
- a probability statement does apply to the random process of selecting a SRS, measuring to get \bar{x}, and then constructing the interval $\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]$
- so, we can say that a 95% confidence interval $\left[\bar{x}-2 \sigma_{\bar{x}}, \bar{x}+2 \sigma_{\bar{x}}\right]$ is produced by a process that has probability 95% of producing an interval containing the true population mean μ
- constructing a a confidence interval for a population mean (when the population standard deviation is known)
- choose a confidence level C

Example: $C=95 \%=0.95$

- determine the z-score z^{\star} for that confidence level

Example: for $C=95 \%=0.95$, have $z^{\star}=2$

- choose a sample size n

Example: $n=100$

- compute the standard deviation $\sigma_{\bar{x}}$

Example: $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{209}{\sqrt{100}}=20.9$

- compute the margin of error $m=z^{\star} \sigma_{\bar{x}}$

Example: $m=z^{\star} \sigma_{\bar{x}}=2(20.9)=41.8$

- measure to get a specific value for \bar{x}

Example: $\bar{x}=1050$

- report the confidence interval $\bar{x} \pm m$

Example: $\bar{x} \pm m=1050 \pm 41.8$
or
$[\bar{x}-m, \bar{x}+m]=[1050-41.8,1050+41.8]=[1008.2,1091.8]$

- refinement:
- value of $z^{\star}=2$ for $C=0.95$ comes from 68-95-99.7 rule
- that rule is a convenient approximation
- more precise value for $C=0.95$ is $z^{\star}=1.96$

Example: $m=z^{\star} \sigma_{\bar{x}}=(1.96)(20.9)=40.96$

