A connection between significance tests and confidence intervals

• consider a two-sided significance test with hypotheses

$$H_0: \mu = \mu_0$$

$$H_a: \mu \neq \mu_0$$

- what difference between the sample mean \bar{x} and the hypothesized population mean μ_0 puts us at the borderline between rejecting the null hypothesis and not rejecting it at the $\alpha = 0.05$ significance level?
- let z^* be the z-score for this borderline situation so $z^* = \frac{\bar{x} \mu_0}{\sigma_{\bar{x}}}$
- so, the borderline difference is $\bar{x} \mu_0 = z^* \sigma_{\bar{x}}$
- need to find z^* so that

$$P$$
-value = $P(Z < -z^* \text{ or } Z > z^*) = 0.05$

- from previous experience, know z^* is about 2; more precisely, can use $z^* = 1.96$
- this is the same value for z^* we use to construct the 95% confidence interval with margin of error $z^*\sigma_{\bar{x}}$
- therefore, doing a two-sided significance test at the $\alpha = 0.05$ significance level is the same thing as computing a 95% confidence interval and then checking if μ_0 is in that interval
- to summarize
 - $-\mu_0$ outside the 95% CI is the same as rejecting the null hypothesis at the 0.05 significance level
 - $-\mu_0$ in the 95% CI is the same as not rejecting the null hypothesis at the 0.05 significance level
- more generally, doing a two-sided significance test at the significance level α is the same thing as computing a confidence interval with confidence level $C = 1 \alpha$ and then checking if μ_0 is in that interval