Some theory on systems of first-order linear homogeneous ODEs

We'll use the following notation:

- $C_{n}^{1}(a, b)$ is the vector space of column vector functions (of size n) with continuous first derivatives on the interval (a, b)
- $\vec{\theta}(t)$ is the zero column vector function (i.e., the column vector function for which each entry is identically zero for all t in $(a, b))$
- $\left[\overrightarrow{A_{1}}, \overrightarrow{A_{2}}, \ldots, \overrightarrow{A_{n}}\right]$ is the matrix with column vectors \vec{A}_{i}
- $W_{S}(t)$ is the Wronskian of the set $S=\left\{\vec{f}_{1}(t), \vec{f}_{2}(t), \ldots, \vec{f}_{n}(t)\right\}$ defined as

$$
W_{S}(t)=\operatorname{det}\left[\vec{f}_{1}(t), \vec{f}_{2}(t), \ldots, \vec{f}_{n}(t)\right]
$$

Theorem 1. Let $S=\left\{\vec{f}_{1}(t), \vec{f}_{2}(t), \ldots, \vec{f}_{n}(t)\right\}$ be a set of functions in $C_{n}^{1}(a, b)$. If there is a t_{0} in (a, b) such that $W_{S}\left(t_{0}\right)$ is nonzero, then S is linearly independent.

Proof. Start with the defining equation of linear independence

$$
c_{1} \vec{f}_{1}(t)+c_{2} \vec{f}_{2}(t)+\cdots+c_{n} \vec{f}_{n}(t)=\vec{\theta}(t)
$$

We must show that the only solution is the trivial solution. First we introduce some notation. Let $F(t)=\left[\vec{f}_{1}(t), \vec{f}_{2}(t), \ldots, \vec{f}_{n}(t)\right]$. Let $\vec{c}=\left[c_{1}, c_{2}, \ldots, c_{n}\right]^{T}$. We can then write the defining equation as

$$
F(t) \vec{c}=\vec{\theta}(t)
$$

The Wronskian $W_{S}(t)$ is defined as the determinant of the coefficient matrix for this system. Since the Wronskian is nonzero for t_{0} in (a, b), the system has a unique solution for that value t_{0}. This unique solution must be the trivial solution because the system of equations is homogeneous. Thus, the trivial solution is the only solution for all values of t.

We now look at the set of solutions for a homogeneous system of n linear first-order differential equations.

Theorem 2. If $A(t)$ is an $n \times n$ matrix function that is continous on the interval (a, b), then the solution space $\mathcal{S}=\left\{\vec{y} \in C_{n}^{1}(a, b) \left\lvert\, \frac{d y}{d t}=A \vec{y}\right.\right\}$ is a subspace of $C_{n}^{1}(a, b)$ with dimension n.

Proof. It is straightforward to show that that \mathcal{S} is a subspace of $C_{n}^{1}(a, b)$. One could do this directly or one could show that $\frac{d}{d t}-A(t)$ is a linear operator and recognize that S is the null space of this operator. To show that S has dimension n, we will find a basis with n elements.

To begin, we claim the existence of n solutions to the system by the existenceuniqueness theorem. In particular, pick some t_{0} in (a, b) and let $\vec{h}_{1}(t), \vec{h}_{2}(t), \ldots$, $\vec{h}_{n}(t)$ be the solutions which satisfy the initial conditions

$$
\vec{h}_{i}\left(t_{0}\right)=\vec{e}_{i}
$$

where \vec{e}_{i} denotes the i th column of the $(n \times n)$ identity matrix I_{n}. Let $B=\left\{\vec{h}_{1}(t)\right.$, $\left.\vec{h}_{2}(t), \ldots, \vec{h}_{n}(t)\right\}$. To prove that B is a basis for \mathcal{S}, we must show two things: one, that B is linearly independent; and two, that B spans \mathcal{S}.

To show linear independence, we note that $W_{B}\left(t_{0}\right)=\operatorname{det}\left(I_{n}\right)=1 \neq 0$. By Theorem 1 , the set B is linearly independent.

To prove that the set B spans \mathcal{S}, we must show that any other solution in \mathcal{S} can be written as a linear combination of the elements in B. Let $\vec{y}(t)$ be any solution. For t_{0}, this solution has some value

$$
\vec{y}\left(t_{0}\right)=\vec{c}
$$

where $\vec{c}=\left[c_{1}, c_{2}, \ldots, c_{n}\right]^{T}$. Consider the solution given by the linear combination $c_{1} \vec{h}_{1}(t)+c_{2} \vec{h}_{2}(t)+\cdots+c_{n} \vec{h}_{n}(t)$. Note that at t_{0}, this solution has the same value as the solution $\vec{y}(t)$. Hence, by the existence-uniqueness theorem, we have

$$
\vec{y}(t)=c_{1} \vec{h}_{1}(t)+c_{2} \vec{h}_{2}(t)+\cdots+c_{n} \vec{h}_{n}(t)
$$

for all t in (a, b). This gives $\vec{y}(t)$ as a linear combination of the elements in B and thus completes the proof.

