Instructions:

Do your own work. You may consult class notes, the course text, or other books. Give a reference if you use some source other than class notes or the course text.

Turn in a complete and concise write up of your work. Show enough detail so that a peer could follow your work (both computations and reasoning). If you are not confident in some result, you will receive more credit if you make a note of this and comment on where you might be going wrong or on alternate approaches you might try.

For any solution in the form of a power series, determine a recurrence equation for the coefficients. Solve the recurrence equation or compute at least 4 nonzero terms. If the series has a finite number of nonzero terms, compute all coefficients.

Do any four of the six problems. Circle the problem number for each problem you submit. Each problem has a maximum value of 25 points.

The exam is due Wednesday, April 13 at 4:00 pm.

1. Find the general solution of $\quad x^{\prime \prime}(t)-2 x^{\prime}(t)+x(t)=\frac{e^{t}}{t} \quad$ for $t>0$
2. Find the general solution of $\quad t^{2} \frac{d^{2} x}{d t^{2}}-2 t \frac{d x}{d t}+2 x=t^{m} \quad$ for $t>0$.
3. Find the general solution of $x^{\prime \prime}+t^{3} x^{\prime}+t x=0$.
4. Find the general solution of $2 t^{2} x^{\prime \prime}+\left(7 t^{2}+7 t\right) x^{\prime}-3 x=0 \quad$ for $t>0$.
5. Find the general solution of the third-order equation $\frac{d^{3} x}{d t^{3}}+t \frac{d x}{d t}+x=0$.
6. Find the specific solution of the initial-value problem

$$
x^{\prime \prime}(t)+(t+1)^{2} x^{\prime}(t)-4(t+1) x(t)=0, \quad x(-1)=0, \quad x^{\prime}(-1)=1
$$

