Approximating functions by polynomials

1. (a) Find the linear function that best approximates $f(x)=e^{x}$ at $x=0$. Note: A linear function is also known as a polynomial of degree 1. Denote this linear function by $p_{1}(x)$ where the p stands for polynomial and the subscript 1 gives the degree.
(b) Find the quadratic function (i.e., polynomial of degree 2) that best approximates $f(x)=e^{x}$ at $x=0$.
(c) Find the cubic function (i.e., polynomial of degree 3) that best approximates $f(x)=e^{x}$ at $x=0$.
(d) Make a conjecture about the quartic function (i.e., polynomial of degree 4) that best approximates $f(x)=e^{x}$ at $x=0$.
(e) Make a conjecture about the polynomial of degree n that best approximates $f(x)=e^{x}$ at $x=0$.
2. Repeat the steps in Problem 1 for $f(x)=\frac{1}{1-x}$ at $x=0$.
3. Repeat the steps in Problem 1 for $f(x)=\sin x$ at $x=0$.
4. Repeat the steps in Problem 1 for $f(x)=\cos x$ at $x=0$.
5. Repeat the steps in Problem 1 for $f(x)=\ln x$ at $x=1$.
