Constructing definite integrals

1. Consider the problem of computing the total mass of a column of air. The density of air decreases as height above sea level increases. Let h be a height above sea level measured in meters. Let $\rho(h)$ be the density of air, measured in $\mathrm{kg} / \mathrm{m}^{3}$, at height h.
(a) Construct a definite integral to compute the total mass of air in a cylindrical column of radius R and height H with its base at sea level.
(b) Compute the total mass of air if $\rho(h)=\rho_{0} e^{-k h}$ where ρ_{0} and k are positive constants.
(c) Get a numerical value for the total mass using the values $\rho_{0}=1.22 \mathrm{~kg} / \mathrm{m}^{3}$, $k=1.1 \times 10^{-4} \mathrm{~m}^{-1}, R=1 \mathrm{~m}$ and $H=10000 \mathrm{~m}$.
2. Consider the problem of computing the total number of bacteria in a circular petri dish. The bacteria colony is more dense at the center than at the edges of the petri dish. Let r denote a radial distance from the center of the dish measured in centimeters. Let $\sigma(r)$ be the density of the bacteria colony, measured in number per square centimeter, at radius r.
(a) Construct a definite integral to compute the total number of bacteria in a petri dish of radius R.
(b) Compute the total number of bacteria if the density is σ_{0} at the center of the dish and decreases linearly to zero at the edge of the dish.
(c) Get a numerical value for the total number with the density as in (b) and the values $\sigma_{0}=5.4 \times 10^{3}$ per cm^{2} and $R=5.5 \mathrm{~cm}$.
3. Here is a fact about continuously compounded interest: An amount A (in dollars) in an account earning interest at a continuously compounded rate r (in $\%$ per year) has a value after τ years of $A e^{r \tau}$.

Consider the problem of computing the future value of deposits in an investment account. Money is deposited into the account at a known rate and the account earns interest compounded continuously. Let t be a time in years and $d(t)$ be the deposit rate (in dollars per year) at time t.
(a) Construct a definite integral to compute the value of an account T years in the future.
(b) Compute the future value if the deposit rate is a constant d_{0} in dollars per year.
(c) Get a numerical value for the value after 5 years with a constant deposit rate of $\$ 1000$ per year and an interest rate of 6%.

