A hint on Section 1.2, Problem 19

We are looking at a solution $y(t)$ in the form

$$
y(t)=\frac{1}{\mu(t)}\left(\mu\left(t_{0}\right) y_{0}+\int_{t_{0}}^{t} \mu(s) f(s) d s\right)=\frac{\mu\left(t_{0}\right) y_{0}}{\mu(t)}+\frac{\int_{t_{0}}^{t} \mu(s) f(s) d s}{\mu(t)}
$$

In class, we had enough to show that the first term in this last expression has a limit of 0 as $t \rightarrow \infty$. To deal with the second term, consider two cases:
Case 1: $\int_{t_{0}}^{t} \mu(s) f(s) d s$ is bounded for all t. This is equivalent to saying there is a constant M such that

$$
\int_{t_{0}}^{t} \mu(s) f(s) d s \leq M \quad \text { for all } t
$$

Case 2: $\int_{t_{0}}^{t} \mu(s) f(s) d s$ is not bounded for all t. This is equivalent to saying

$$
\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} \mu(s) f(s) d s=\infty
$$

Case 1 is straightforward to deal with. For Case 2, we can apply L'Hôpital's rule since we are dealing with a limit that has the indeterminate form $\frac{\infty}{\infty}$. You should finish both cases. Keep in mind that we have

$$
\mu(t)=\exp \left(\int_{t_{0}}^{t} a(x) d x\right) .
$$

