Challenge problems

1. Analyze continuity of the function

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x \text { is rational and } x=\frac{p}{q} \text { in lowest terms } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

for x in $[1,2]$.
2. Consider the function

$$
f(x)= \begin{cases}x \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Compute the derivative $f^{\prime}(x)$ for $x \neq 0$.
(b) Analyze $\lim _{x \rightarrow 0} f^{\prime}(x)$.
(c) Determine if this function differentiable at 0 . If so, find the value of $f^{\prime}(0)$.
3. Consider the function

$$
f(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Compute the derivative $f^{\prime}(x)$ for $x \neq 0$.
(b) Analyze $\lim _{x \rightarrow 0} f^{\prime}(x)$.
(c) Determine if this function differentiable at 0 . If so, find the value of $f^{\prime}(0)$.
4. Compare your results for 2 and 3 . Visualize the difference between the graphs of these two functions near $x=0$.
5. Consider vector-output functions of the form

$$
\vec{r}(t)=A\langle\cos (a t), \sin (a t)\rangle+B\langle\cos (b t), \sin (b t)\rangle
$$

where A, B, a and b are positive constants. From looking at specific cases, we know that the output curve may have "rounded dips", cusps, or "loop-de-loops" depending on the choice of values for A, B, a, and b. Find a condition on these parameters which results in cusps on the output curves.

