Definition:

Let f be a function whose domain contains a set of the form $\{x|0<|x-a|<r\}$ for some r. The number L is the limit of f at a if there is a positive function $\delta(\varepsilon)$ with domain $(0, \infty)$ sch that $0<|x-a|<\delta(\varepsilon)$ implies that $|f(x)-L|<\varepsilon$.

Example: Prove the following limit property:
If $\lim _{x \rightarrow a} p(x)=L_{1}$ and $\lim _{x \rightarrow a} q(x)=L_{2}$, then

$$
\lim _{x \rightarrow a}(p(x)+q(x))=\lim _{x \rightarrow a} p(x)+\lim _{x \rightarrow a} q(x)=L_{1}+L_{2}
$$

Solution: The conclusion we need to reach is the limit statement

$$
\lim _{x \rightarrow a}(p(x)+q(x))=L_{1}+L_{2}
$$

In the notation of the definition, we have $f(x)=p(x)+q(x)$ and $L=L_{1}+L_{2}$.
We assume that $\lim _{x \rightarrow a} p(x)=L_{1}$ and $\lim _{x \rightarrow a} q(x)=L_{2}$. From the definition of $\lim _{x \rightarrow a} p(x)=L_{1}$, there is a positive function $\delta_{1}(\varepsilon)$ such that

$$
0<|x-a|<\delta_{1}(\varepsilon) \quad \text { implies that } \quad\left|p(x)-L_{1}\right|<\varepsilon .
$$

Likewise, from the definition of $\lim _{x \rightarrow a} q(x)=L_{2}$, there is a positive function $\delta_{2}(\varepsilon)$ such that

$$
0<|x-a|<\delta_{2}(\varepsilon) \quad \text { implies that } \quad\left|q(x)-L_{2}\right|<\varepsilon .
$$

Let $\delta(\varepsilon)=\min \left\{\delta_{1}\left(\frac{\varepsilon}{2}\right), \delta_{2}\left(\frac{\varepsilon}{2}\right)\right\}$. Note that $\delta(\varepsilon)$ is defined for each ε in the interval $(0, \infty)$ since $\frac{\varepsilon}{2}>0$ whenever $\varepsilon>0$. Note also that $\delta(\varepsilon)>0$ for each such ε since $\delta_{1}\left(\frac{\varepsilon}{2}\right)>0$ and $\delta_{2}\left(\frac{\varepsilon}{2}\right)>0$.

Now assume $0<|x-a|<\delta(\varepsilon)$. By the choice of $\delta(\varepsilon)$, this implies

$$
0<|x-a|<\delta_{1}\left(\frac{\varepsilon}{2}\right) \quad \text { and } \quad 0<|x-a|<\delta_{2}\left(\frac{\varepsilon}{2}\right) .
$$

Thus,

$$
\left|p(x)-L_{1}\right|<\frac{\varepsilon}{2} \quad \text { and } \quad\left|q(x)-L_{2}\right|<\frac{\varepsilon}{2}
$$

Adding corresponding sides of these inequalitites gives us

$$
\left|p(x)-L_{1}\right|+\left|q(x)-L_{2}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}
$$

so

$$
\left|p(x)-L_{1}\right|+\left|q(x)-L_{2}\right|<\varepsilon .
$$

For any expressions A and B, it is true that $|A+B| \leq|A|+|B|$. Using this with $A=p(x)-L_{1}$ and $B=q(x)-L_{2}$, we get

$$
\left|\left(p(x)-L_{1}\right)+\left(q(x)-L_{2}\right)\right|<\varepsilon .
$$

Rearranging the terms on the left side of this gives

$$
\left|(p(x)+q(x))-\left(L_{1}+L_{2}\right)\right|<\varepsilon
$$

Thus, there is a function $\delta(\varepsilon)$ such that
$0<|x-a|<\delta(\varepsilon) \quad$ implies that $\quad|f(x)-L|=\left|(p(x)+q(x))-\left(L_{1}+L_{2}\right)\right|<\varepsilon$.
Problem: Prove the constant multiple property for limits.

