A precise definition of limit

Definition:

Let f be a function whose domain contains a set of the form $\{x|0<|x-a|<r\}$ for some r. The number L is the limit of f at a if there is a positive function $\delta(\varepsilon)$ with domain $(0, \infty)$ sch that $0<|x-a|<\delta(\varepsilon)$ implies that $|f(x)-L|<\varepsilon$.

Notation:
If the number L is the limit of the function f at a, we denote this by $\lim _{x \rightarrow a} f(x)=L$.

Comment:

The condition that $\delta(\varepsilon)$ has domain $(0, \infty)$ says that $\delta(\varepsilon)$ is defined for any $\varepsilon>0$. Saying that $\delta(\varepsilon)$ is a positive function means that $\delta(\varepsilon)>0$ for any $\varepsilon>0$. This is equivalent to saying that the range of $\delta(\varepsilon)$ is contained in the interval $(0, \infty)$.

Example: Prove that $\lim _{x \rightarrow 1}(4 x+1)=5$.
Solution: In this case, $f(x)=4 x+1, a=1$, and $L=5$.
Let $\delta(\varepsilon)=\frac{\varepsilon}{4}$. Note that $\delta(\varepsilon)$ is defined for $\varepsilon>0$ and that $\delta(\varepsilon)>0$ for each $\varepsilon>0$.
Now assume $0<|x-1|<\delta(\varepsilon)$. Thus $|x-1|<\frac{\varepsilon}{4}$. Multiply both sides by 4 to get $4|x-1|<\varepsilon$ or $|4 x-4|<\varepsilon$. Since $-4=1-5$, we can write the last inequality as $|4 x+1-5|<\varepsilon$. This is equivalent to $|f(x)-L|<\varepsilon$.

We have shown that $\delta(\varepsilon)=\frac{\varepsilon}{4}$ is a positive function with domain $(0, \infty)$ such that $0<|x-1|<\delta(\varepsilon)$ implies $|f(x)-5|<\varepsilon$ for the function $f(x)=4 x+1$. We have thus proven that $\lim _{x \rightarrow 1}(4 x+1)=5$.

Example: Prove that $\lim _{x \rightarrow 0} x^{2}=0$.
Solution: In this case, $f(x)=x^{2}, a=0$, and $L=0$.
Let $\delta(\varepsilon)=\sqrt{\varepsilon}$. Note that $\delta(\varepsilon)$ is defined for $\varepsilon>0$ and that $\delta(\varepsilon)>0$ for each $\varepsilon>0$.

Now assume $0<|x-0|<\delta(\varepsilon)$. Thus $|x|<\sqrt{\varepsilon}$. Square both sides to get $|x|^{2}<\varepsilon$ or $\left|x^{2}\right|<\varepsilon$. Since $x^{2}=x^{2}-0$, we can write the last inequality as $\left|x^{2}-0\right|<\varepsilon$. This is equivalent to $|f(x)-L|<\varepsilon$.

We have shown that $\delta(\varepsilon)=\sqrt{\varepsilon}$ is a positive function with domain $(0, \infty)$ such that $0<|x-0|<\delta(\varepsilon)$ implies $|f(x)-0|<\varepsilon$ for the function $f(x)=x^{2}$. We have thus proven that $\lim _{x \rightarrow 0} x^{2}=0$.

Problems:

1. Prove $\lim _{x \rightarrow 2}(3 x-1)=5$.
2. Prove $\lim _{x \rightarrow 4}(6-2 x)=-2$.
3. Prove $\lim _{x \rightarrow 5} \frac{x}{10}=\frac{1}{2}$.
4. Prove $\lim _{x \rightarrow 0} x^{3}=0$.
