\qquad
MATH 302
Partial Differential Equations
Fall 2002
Final Exam
Instructions: Do your own work. You may consult class notes, the course text, or other books. Give a reference if you use some source other than class notes or the course text. Turn in a complete and concise write up of your work. Show enough detail so that a peer could follow your work. If you are not confident in some result, you will receive more credit if you make a note of this and comment on where you might be going wrong or on alternate approaches you might try. The exam is due Friday, December 20 at 2:00 pm.

1. Solve the following initial-value problem for the heat equation with a source term on the real line:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}+h(x) & & -\infty<x<\infty, \quad t>0 \\
u(x, 0) & =f(x) & & -\infty<x<\infty .
\end{aligned}
$$

2. Solve the following boundary-value problem for Laplace's equation on an infinite strip:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0 & & -\infty<x<\infty, \quad 0<y<L \\
u(x, 0) & =f(x) & & -\infty<x<\infty \\
u(x, L) & =g(x) & & -\infty<x<\infty .
\end{aligned}
$$

3. (a) Describe the separation of variables technique for solving a boundary-value or initial boundary-value problem for a second-order partial differential equation in two variables. Be as general as possible. Include a discussion on conditions necessary for separation of variables to work and refer to relevant aspects of Sturm-Liouville theory.
(b) Consider the general linear second-order partial differential equation in two variables:

$$
a(x, y) \frac{\partial^{2} u}{\partial x^{2}}+b(x, y) \frac{\partial^{2} u}{\partial x \partial y}+c(x, y) \frac{\partial^{2} u}{\partial y^{2}}+d(x, y) \frac{\partial u}{\partial x}+e(x, y) \frac{\partial u}{\partial y}+f(x, y) u=0 .
$$

Find conditions on the coefficient functions a, b, c, d, e, and f so that the PDE is separable. Look for the most general conditions possible.

