Problem 1(b) should read: Derive an upper bound on the error for the midpoint approximation Mid_{n} in terms of a, b, n, and M_{2} where M_{2} is an upper bound for $\left|f^{\prime \prime}(x)\right|$.

Here's how to get started: The difference between the function $f(x)$ and the linear approximation $l(x)$ based at $\frac{c+d}{2}$ has an upper bound given by

$$
|f(x)-l(x)| \leq \frac{1}{2} M_{2}\left(x-\frac{c+d}{2}\right)^{2}
$$

This is just Equation (8.12) on page 286 with some different notation.
The error in the midpoint (= "tangent line at the midpoint" approximation) for the subinterval $[c, d]$ is given by

$$
\left|\int_{c}^{d}(f(x)-l(x)) d x\right| \leq \int_{c}^{d}|f(x)-l(x)| d x \leq \int_{c}^{d} \frac{1}{2} M_{2}\left(x-\frac{c+d}{2}\right)^{2} d x
$$

The last integral in the line above can be evaluated exactly. The result can be expressed in terms of a, b, n, and M_{2} using

$$
d-c=\Delta x=\frac{b-a}{n} .
$$

This result thus applies to each subinterval so a bound on the total error is given by n times this result.

When the dust settles, the error bound you get can be compared with the error bound we know for the original trapezoid approximation, namely

$$
\frac{1}{12} M_{2} \frac{(b-a)^{3}}{n^{2}}
$$

The relationship between the two error bounds should be obvious.

