Errata for Integrated Physics and Calculus, Volume I

Andrew Rex and Martin Jackson © 2000 Addison Wesley Longman
Updated January 18, 2005
Note: "Line $-n$ " means the nth line from the bottom of the page.
p. 5 , line 3
p. 16, Table 1.3
p. 33 , line 14
p. 41, Problems $12 / 13$
p. 69 , line -6
p. 73, Figure 2.21
p. 73 , Figure 2.21 caption
p. 83 , line 8
p. 99, line -2
p. 108, line 3
p.112, line -1
p. 128, line 6
p. 128, Problem 6
p. 145 , line -10
p. 152-153, Figures 4.9 and 4.10
as vector \rightarrow as a vector
$\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{b} \quad \rightarrow \quad \vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
dimensions of volume \rightarrow dimensions of density
for position function \rightarrow for the position function
$\frac{\cos x \frac{d}{d x}\left[x^{3}\right]-\frac{d}{d x}[\cos x] x^{3}}{\left(x^{3}\right)^{2}}=\frac{\cos x\left(3 x^{2}\right)-(-\sin x)\left(x^{3}\right)}{x^{6}}=\frac{3 \cos x+x \sin x}{x^{4}} \rightarrow$
$\frac{\frac{d}{d x}[\cos x] x^{3}-\cos x \frac{d}{d x}\left[x^{3}\right]}{\left(x^{3}\right)^{2}}=\frac{(-\sin x)\left(x^{3}\right)-\cos x\left(3 x^{2}\right)}{x^{6}}=-\frac{x \sin x+3 \cos x}{x^{4}}$
$t \rightarrow x$
$f(t) \rightarrow f(x) \quad, \quad f\left(t_{1}\right) \quad \rightarrow \quad f\left(x_{1}\right)$
$\frac{d}{d t}\left[\frac{\vec{r}(t)}{g(t)}\right] \quad \rightarrow \quad \frac{d}{d t}\left[\frac{\vec{r}(t)}{f(t)}\right]$
$\int_{a}^{b} f(x) d x \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n} \rightarrow \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n}$
$\int 2 x d x \rightarrow \int 2 x d x$
$\int_{a}^{t} f(t) d t \rightarrow \int_{a}^{x} f(t) d t$
antiderivatives \rightarrow antiderivative
$z^{\prime}(t)=1 / z^{2} \quad \rightarrow \quad z^{\prime}(t)=1 / t^{2}$
wand \rightarrow want
Figures 4.9 and 4.10 should appear as follows.

p. 162, Problem 9(a), line 3 corresponding to $u=\rightarrow \quad$ corresponding to $t=$
p. 163, Problem 9(a)
$\kappa(t)=\frac{\left|f^{\prime \prime}(t)\right|}{\left[1+\left(f^{\prime}(t)\right)\right]^{3 / 2}} \quad \rightarrow \quad \kappa(t)=\frac{\left|f^{\prime \prime}(t)\right|}{\left[1+\left(f^{\prime}(t)\right)^{2}\right]^{3 / 2}}$
p. 164, Problem 16, line $3 \quad t^{\prime}(u)$ not equal to zero $\quad \rightarrow \quad t^{\prime}(u)>0$
p. 170, line -6
p. 176, Figure 5.9(b) labels $m_{1} \cos \theta \quad \rightarrow \quad m_{1} g \cos \theta \quad, \quad m_{1} \sin \theta \quad \rightarrow \quad m_{1} g \sin \theta$
p. 195, Example 6.1, first sentence of solution
p. 206, line -7
p. 213 , line -15
p. 239 , line 6
p. 270 , Problem 26
p. 285, line -9
p. 285 , line -5
p. 287, Theorem 8.4

All derivatives appear to first-order, so the equation is first-order. \rightarrow All derivatives appear to the first power, so the equation is linear.
left side $\rightarrow \quad$ right side
unity \rightarrow unit
Chapter $5 \rightarrow$ Chapter 6
described in Problem $25 \rightarrow$ described in Problem 25
acceleration component $v_{x} \rightarrow$ acceleration component a_{x}
$\approx \quad \rightarrow \quad=$
Theorem 8.4 should read
Theorem 8.4. Let f be a function that is twice differentiable for all x in $[a, b]$. If K is a positive number such that $-K \leq f^{\prime \prime}(x) \leq K$ for all x in $[a, b]$, then

$$
\begin{equation*}
f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-\frac{K(x-a)(b-x)}{2} \leq f(x) \leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)+\frac{K(x-a)(b-x)}{2} \tag{8.13}
\end{equation*}
$$

for all x in $[a, b]$.
p. 287 , line 8
p. 296 , line 5
p. 297, line -7
p. 297, line -4
p. 323, Figure 9.12(b)
p. 324 , line 5
p. 324 , line 17
p. 373 , line -8
p. 379 , last paragraph, continuing on p. 381

With K equal to the maximum of $|m|$ and $|M|, \quad \rightarrow \quad$ Rearranging and using absolute values,
$f\left(x_{1}\right) \quad \rightarrow \quad f\left(x_{i}\right)$
$\int_{x_{i-1}}^{x_{i}} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x \rightarrow \int_{x_{i-1}}^{x_{i}} \frac{1}{2} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x$
$\int_{x_{i-1}}^{x_{i}} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x \rightarrow \int_{x_{i-1}}^{x_{i}} \frac{1}{2} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x$
$v_{1} \quad \rightarrow \quad u_{1} \quad, \quad v_{2} \quad \rightarrow \quad u_{2}$
$0=m v u_{1} \cos \frac{\pi}{6}-m u_{2} \cos \alpha \quad \rightarrow \quad 0=m u_{1} \sin \frac{\pi}{6}-m u_{2} \sin \alpha$
$\vec{v}_{0}=\vec{u}_{1}+\vec{u}_{2} \quad \rightarrow \quad \vec{v}_{0}=\vec{u}_{1}+\vec{u}_{2}$
makes and angle \rightarrow makes an angle
The paragraph should read as follows:
A little experimentation reveals that this model has a wide variety of behavior depending on the choice of the parameter β. Some examples are shown in Figure 11.3 for the values $\beta=$ $2.4,2.8,3.1,3.5$, and 3.9. For $\beta=2.4$ [Figure 11.3(b)], we see successive elements in the sequence increasing to a limiting value of about 0.58 . This behavior is similar to that of the case with $\beta=1.1$, except the values increase to the limit rather than decrease. For $\beta=2.8$ [Figure $11.3(\mathrm{c})$], the sequence again tends to a single limit value but in quite a different manner with successive values oscillating between being greater than and less than the apparent limit value of about 0.64. A different behavior altogether appears with $\beta=3.1$, as seen in Figure 11.3(d). In this case, the sequence does not appear to converge to a single limit value but rather settles down to oscillating between two distinct values at approximately 0.56 and 0.77 . A close look at the $\beta=3.5$ case in Figure 11.3(e) reveals similar oscillatory behavior but now with one cycle including four distinct values. Finally, in the $\beta=3.9$ case [Figure 11.3(f)], no regular pattern is evident.
p. 380, Figure 11.3
p. 383, line 2 of Section 11.2.1
p. 392 , line 10
p. 404 , line 3
p. 404, Table 11.7
p. 447 , line -4
p. 450, line 1
p. 450 , line -4
p. 456 , line $9-10$
p. 461 , line -8
p. 463, line 4
p. 468 , line -8
p. 487, first display
p. 498 , line -12
p. 502, line 6
p. AN-1, Volume 1, Section 1.1, Problem 7

Figures 11.3 (d) and 11.3 (e) should appear as follows.

$\mathbb{N}=\{0,1,2,3, \ldots\} \quad \rightarrow \quad \mathbb{N}=\{1,2,3, \ldots\}$
$1 /(1-p) \quad \rightarrow \quad 1 /(p-1)$
$\sum_{k=0}^{15} \frac{1}{k!} x^{k} \rightarrow \sum_{k=0}^{15} \frac{1}{k!} 3^{k}$
$\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} x^{k} \quad \rightarrow \quad \ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}$
lines in the plane by linear equations in three variables $\rightarrow \quad$ lines in the plane by linear equations in two variables
line \rightarrow plane
in two places: $-D / A \quad \rightarrow \quad-D / C$
a infinite number of values for $\arcsin 0.5 \quad \rightarrow \quad$ infinitely many values of $\arcsin 0.5$
desribes \rightarrow describes
The text following the first display should read:
Fix the parameters a, b, and c while considering d as varying from 1 to -1 . Think of the corresponding surfaces in animation with d serving as the time (running backward from $d=1$ to $d=-1$). At $d=1$, we see a one-sheet hyperboloid. As d decreases, the neck of the one-sheet hyperboloid contracts in toward the origin. For $d=0$, the neck pinches down to the origin itself and the surface is an elliptic cone. As d continues to decrease (and is now negative), the surface splits into a two-sheet hyperboloid.
$\lim _{u \rightarrow K} \cos (u)=K \quad \rightarrow \quad \lim _{u \rightarrow K} \cos (u)=\cos (K)$
Should read:
$\tilde{f}(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \text { is in } R \\ 0 & \text { if }(x, y) \text { is in } \tilde{R} \text { but not in } R .\end{cases}$
The third coordinate is z is the same \rightarrow The third coordinate is the same
by integrating the the function \rightarrow by integrating the function
$\langle-8,4\rangle \quad \rightarrow \quad\langle-8,-4\rangle$
p. AN-1, Volume 1,

Section 1.4, Problem 17
p. AN-1, Volume 1,

Section 2.2, Problem 19
p. AN-2, Volume 1,

Section 3.1, Problem 13
p. AN-3, Volume 1,

Section 4.1, Problem 7(a)
p. AN-3, Volume 1,

Section 4.1, Problem 7(b)
p. AN-3, Volume 1,

Section 4.1, Problem 15(b)
p. AN-3, Volume 1,

Section 4.3, Problem 4
p. AN-3, Volume 1,

Section 5.2, Problem 11(b)
p. AN-4, Volume 1,

Section 7.1, Problem 11
p. AN-4, Volume 1,

Section 7.3, Problem 3
p. AN-4, Volume 1, Section 8.1, Problem 3
p. AN-4, Volume 1,

Section 8.1, Problem 25
p. AN-5, Volume 1,

Section 8.4, Problem 1(a)
p. AN-5, Volume 1,

Section 10.1, Problem 11
p. AN-5, Volume 1, Section 10.4, Problem 3
p. AN-5, Volume 1,

Section 11.3, Problem 5

$$
\mathrm{kg} \quad \rightarrow \mathrm{~kg} / \mathrm{m}^{3}
$$

$66.6 \mathrm{~km} / \mathrm{h} \quad \rightarrow \quad 66 \mathrm{~km} / \mathrm{h}$
$L_{5}=-24.72, U_{5}=-22.92 \quad \rightarrow \quad L_{5}=-25.32, U_{5}=-22.344$
$\vec{v}=\left\langle 1.5 t,-\frac{1}{2} t^{2}\right\rangle \quad \rightarrow \quad \vec{v}=\left\langle 0,-\frac{1}{2} t^{2}, 1.5 t\right\rangle$
$\vec{r}=\left\langle 0.75 t^{2}+30,-\frac{1}{6} t^{3}+22\right\rangle \quad \rightarrow \quad \vec{r}=\left\langle-12,-\frac{1}{6} t^{3}+22,0.75 t^{2}+30\right\rangle$
$39.1 \mathrm{~s} \quad \rightarrow \quad 55.3 \mathrm{~s}$
$1+\cos ^{2} t \quad \rightarrow \quad 1+\sin ^{2} t$
$25.9 \mathrm{~N} \quad \rightarrow \quad 26.4 \mathrm{~N}$
$2 m g / k \quad \rightarrow \quad m g / k$
$-32 / 2 \mathrm{~J} \quad \rightarrow \quad-32 / 3 \mathrm{~J}$
$\frac{5}{23} \ln \left(x^{2}+3\right)+C \quad \rightarrow \quad \frac{5}{2} \ln \left(x^{2}+3\right)+C$
$x^{2} \sin x+2 x \cos x+\sin x+C \quad \rightarrow \quad x^{2} \sin x+2 x \cos x-2 \sin x+C$
$2.56 \pm 8 \quad \rightarrow \quad 2.56 \pm 4.8$
$\theta=e^{t}-2-1 \quad \rightarrow \quad \theta=e^{t}-t-1$
$2.61 \mathrm{~s} \quad \rightarrow \quad 0.261 \mathrm{~s}$
$5 \rightarrow 4$

