
Fields Setup

Given α ∈ K ⊇ F ( K is an extension field of F )

If α is either transcendental or algebraic over F

• F [x] is the ring of polynomials in the variable x with coefficients in F.

• F (x) is the field of fractions built from the integral domain F [x] of all polynomials in x with
coefficients in F.

1. F (x) is the quotient field of F [x] .

• F [α] is the Ring generated by α ∈ K over F

1. F [α] = {anαn + · · ·+ a0 ∈ K : ai ∈ F}
2. Special case: when we adjoin an element α to F

(a) Note that adjunction requires α to be algebraic over F and we know

F [x]

〈f (x)〉
= F [α]

• F (α) is the smallest subfield of K containing both F and α.

1. Called the field extension of F generated by the element α ∈ K.
2. F (α) = {a+ b1α + · · ·+ bnα

n : a, bi ∈ F}
3. This extends naturally to α1, · · · , αn

• F (α) is isomorphic to the field of fractions of the ring F [α] (no notation has been defined
for this)

1. This is true because of closure in one direction and minimality in the other.

If α is transcendental

Proposition 1 If α is transcendental over F then

1. The map ψ : F [x]→ F [α] given by ψ (f (x)) = f (α) is an isomorphism.

2. Hence F (α) is isomorphic to F (x) ,the fraction field of F [x] , of rational functions over the
field F.

Remark 1 Note that for any two transcendental elements α , β we have F (α) ≈ F (β) .
Thus, Q (π) ≈ Q (e) where the isomorphism takes π to e.
This is surprising at first glance but careful consideration shows the isomorphism cannot be contin-
uous when the fields are regarded as subfields of the real numbers. (Think of rational numbers close
to π).
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If α is algebraic

Proposition 2 Suppose α is algebraic over F and f (x) is the irreducible polynomial for α over F,
then

1. .The map

ψ :
F [x]

〈f (x)〉
→ F [α]

is an isomorphism

2. F [α] is a field and so F [α] = F (α) by closure and minimality

3. More generally, if α1, · · · , αn are algebraic elements of a field extension K of F then

F [α1, · · · , αn] = F (α1, · · · , αn)

Proposition 3 Let α be an algebraic element over a field F and let f (x) be its irreducible poly-
nomial. Suppose f has degree n. Then (1, α, · · · , αn−1) is a basis for F [α] as a vector space with
scalars in the field F.
Proof: We have already proved this in the more general setting of rings.

Corollary 4 If α, β are algebraic elements that generate isomorphic extension fields over F , then
their irreducible polynomials must have the same degree.

Remark 2 This is a necessary but not a sufficient condition for extension fields to be isomorphic.

• In Class Problem #7?: Prove or disprove: Q
(√
−1

)
is isomorphic to Q

(√
−5

)
.

Interesting Case: (setting up Galois Theory)

We want to investigate where there is an isomorphism from F (α) to F (β) that fixes every element
of F and maps α to β.

Proposition 5 (Equal Irreducible Polynomials) Let α ∈ K and β ∈ L be algebraic elements of
two extension fields of F.There is an isomorphism σ : F (α) → F (β) which is the identity on the
subfield F and which sends α to β if and only if the irreducible polynomials for α and β over F are
equal.

Definition 1 Let K and K ′ be two extensions of the same field F. An isomorphism φ : K → K ′

which is the identity on elements of F is called an isomorphism of field extensions, or an F -
isomorphism. Two extensions K,K ′ of F are said to be isomorphic field extensions if there exists
an F isomorphism taking K to K ′.

Proposition 6 (In Class Homework #8) Let φ : K → K ′ be an isomorphism of field extensions of
F and let f (x) be a polynomial with coefficients in F. Let α be a root of f in K and let α′ = φ (α)
be its image in K ′.Then

1. α′ is also a root of f.

2. Deduce the irreducible polynomials for K and K ′ are equal.
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