Powers of Diagonal Matrices

Definition: A matrix $D \in M_{mm}$ is diagonal if for all i, j satisfying $1 \le i, j \le m$

$$[D]_{i,j} = 0$$
 when $i \neq j$

Lemma IC-1: If A and B are $m \times m$ diagonal matrices, then AB is also diagonal and $[AB]_{ij} = [A]_{ij} [B]_{ij}$ for all i, j satisfying $1 \le i, j \le m$.

Proof: Using matrix multiplication we know that for all i and j, $[AB]_{ij} = \sum_{l=1}^{m} [A]_{il} [B]_{lj}$. Using the fact that A and B are diagonal we also know that $[A]_{il} = 0$ when $i \neq l$ and $[B]_{lj} = 0$ when $l \neq j$. Thus,

$$[A]_{il} [B]_{lj} = \begin{cases} 0 \text{ if } i \neq l \\ 0 \text{ if } l \neq j \\ [A]_{ii} [B]_{ii} \text{ if } i = l = j \end{cases}$$

If $i \neq j$ then l can never equal both i and j, so $[AB]_{ij} = \sum_{l=1}^{m} [A]_{il} [B]_{lj} = \sum_{l=1}^{m} 0 = 0$ which tells us that AB is a diagonal matrix. In addition. if i = j then the only nonzero term in the sum occurs when l = i = j and $[AB]_{ii} = \sum_{l=1}^{m} [A]_{il} [B]_{lj} = [A]_{ii} [B]_{ii}$. Thus, in all cases, $[AB]_{ij} = [A]_{ij} [B]_{ij}$ and AB is diagonal.

Lemma IC-2: If D is an $m \times m$ diagonal matrix, then for each positive integer n, D^n is a diagonal matrix and $[D^n]_{ij} = [D]_{ij}^n$ for all i, j satisfying $1 \le i, j \le m$.

Proof: We use mathematical induction in our proof.

- 1. Base case: If n = 1 then $D^n = D^1 = D$ is diagonal by hypothesis and $[D^1]_{ij} = [D]_{ij}^1$ for all i, j satisfying $1 \le i, j \le m$.
- 2. For our inductive hypothesis we assume that k is a positive integer for which D^k is diagonal and $[D^k]_{ij} = [D]_{ij}^k$ and we consider the matrix D^{k+1} . Since both D^k and D are diagonal, then Lemma IC-1 implies that $D^{k+1} = D^k D$ is diagonal. Thus

$$\begin{bmatrix} D^{k+1} \end{bmatrix}_{ij} = \begin{bmatrix} D^k \end{bmatrix}_{ij} \begin{bmatrix} D \end{bmatrix}_{ij} \quad \text{by Lemma IC-1} \\ = \begin{bmatrix} D \end{bmatrix}_{ij}^k \begin{bmatrix} D \end{bmatrix}_{ij} \quad \text{by the Inductive Hypothesis} \\ = \begin{bmatrix} D \end{bmatrix}_{ij}^{k+1} \quad \text{by multiplication of Complex numbers.}$$

The principle of mathematical induction now implies that if D is a diagonal matrix, then for every positive integer n, D^n is also diagonal and $[D^n]_{ij} = [D]_{ij}^n$ for all i, j satisfying $1 \le i, j \le m$.