## Powers of Diagonal Matrices

Definition: A matrix $D \in M_{m m}$ is diagonal if for all $i, j$ satisfying $1 \leq i, j \leq m$

$$
[D]_{i, j}=0 \text { when } i \neq j
$$

Lemma IC-1: If $A$ and $B$ are $m \times m$ diagonal matrices, then $A B$ is also diagonal and $[A B]_{i j}=$ $[A]_{i j}[B]_{i j}$ for all $i, j$ satisfying $1 \leq i, j \leq m$.
Proof: Using matrix multiplication we know that for all $i$ and $j,[A B]_{i j}=\sum_{l=1}^{m}[A]_{i l}[B]_{l j}$. Using the fact that $A$ and $B$ are diagonal we also know that $[A]_{i l}=0$ when $i \neq l$ and $[B]_{l j}=0$ when $l \neq j$.Thus,

$$
[A]_{i l}[B]_{l j}=\left\{\begin{array}{c}
0 \text { if } i \neq l \\
0 \text { if } l \neq j \\
{[A]_{i i}[B]_{i i} \text { if } i=l=j}
\end{array}\right.
$$

If $i \neq j$ then $l$ can never equal both $i$ and $j$, so $[A B]_{i j}=\sum_{l=1}^{m}[A]_{i l}[B]_{l j}=\sum_{l=1}^{m} 0=0$ which tells us that $A B$ is a diagonal matrix. In addition. if $i=j$ then the only nonzero term in the sum occurs when $l=i=j$ and $[A B]_{i i}=\sum_{l=1}^{m}[A]_{i l}[B]_{l j}=[A]_{i i}[B]_{i i}$. Thus, in all cases, $[A B]_{i j}=[A]_{i j}[B]_{i j}$ and $A B$ is diagonal.

Lemma IC-2: If $D$ is an $m \times m$ diagonal matrix, then for each positive integer $n, D^{n}$ is a diagonal matrix and $\left[D^{n}\right]_{i j}=[D]_{i j}^{n}$ for all $i, j$ satisfying $1 \leq i, j \leq m$.

Proof: We use mathematical induction in our proof.

1. Base case: If $n=1$ then $D^{n}=D^{1}=D$ is diagonal by hypothesis and $\left[D^{1}\right]_{i j}=[D]_{i j}^{1}$ for all $i, j$ satisfying $1 \leq i, j \leq m$.
2. For our inductive hypothesis we assume that $k$ is a positive integer for which $D^{k}$ is diagonal and $\left[D^{k}\right]_{i j}=[D]_{i j}^{k}$ and we consider the matrix $D^{k+1}$. Since both $D^{k}$ and $D$ are diagonal, then Lemma IC-1 implies that $D^{k+1}=D^{k} D$ is diagonal. Thus

$$
\begin{aligned}
{\left[D^{k+1}\right]_{i j} } & =\left[D^{k}\right]_{i j}[D]_{i j} & & \text { by Lemma IC-1 } \\
& =[D]_{i j}^{k}[D]_{i j} & & \text { by the Inductive Hypothesis } \\
& =[D]_{i j}^{k+1} & & \text { by multiplication of Complex numbers. }
\end{aligned}
$$

The principle of mathematical induction now implies that if $D$ is a diagonal matrix, then for every positive integer $n, D^{n}$ is also diagonal and $\left[D^{n}\right]_{i j}=[D]_{i j}^{n}$ for all $i, j$ satisfying $1 \leq i, j \leq m$.

