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1 History

In October 1843, William Rowan Hamilton obsessed over a dilemma proposed by his
son at breakfast, that of multiplying “triplets”, or merely sets of three objects [1]. The
better part of two centuries later, a method for such an operation may seem obvious.
We have cross products and dot products for vectors, as well as fields of polynomials
among other structures that involve multiplying objects of three or more parts. Now
consider endowing the span (S) of the linearly independent set of three vectors over a
field {α, β, γ} with an associative multiplication operation that distributes over addition.
Take τ = (1)α+ (1)β + (1)γ as the simplest linear combination in S and compute (τ)2:

(τ)(τ) = α(α+ β + γ) + β(α+ β + γ) + γ(α+ β + γ)

= (α2 + β2 + γ2) + αβ + αγ + βα+ βγ + γα+ γβ,

a disastrous result if we haven’t carefully defined ways to multiply elements of the span-
ning set. We need three symmetric bilinear products to absorb the last six terms of
(τ)(τ) into S. Hamilton was grappling with the hefty task of assigning these relations
to such a vector space which would result in closure under multiplication and preserve
other algebraic properties. The only similar structure that existed at the time was the
complex numbers, and polynomial rings over multiple indeterminants, yet {α, β, γ} are
meant to be determined objects, much like a coordinate system.

On one fateful walk Hamilton arrived at the following solution, which he then carved
into the Brougham Bridge in Dublin [1]:

i2 = j2 = k2 = ijk = −1 (1)

which led to the following results:

ij = k; jk = i; ki = j; ji = −k; kj = −i; ik = −j. (2)
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From these Hamilton crafted the 4-dimensional Quaternion Algebra, H, and proved that
a 3-dimensional algebra of similar structure was impossible. He initially applied H to
mechanics in three-dimensional space, after which a number of uses in physics were
found for the ability of quaternions to induce rotations on physical objects under the
influence of an additional attribute, such as time, force, temperature, or virtually any
physical quality. Mathematically, the Quaternion Algebra over R is now know to have
the largest dimension of any division algebra over R, and the only such algebra up to
isomorphism by Frobenius in 1878 [2]. Quaternion Algebras were generalized later to
include the multiplicative relations above over an arbitrary field K of characteristic > 2,
the construction of which is now possible in Sage with the option of setting i2 = a and
j2 = b for with any {a, b} ∈ K (an with ij = k).

With the Quaternions, Hamilton introduced the terms “vector” and “scalar” into
the canon of mathematical terminology, as well as “associativity”, when later a friend
from college, John T. Graves, created the Octonions of dimension 8, where associativity
fails [1]. In this paper I aim to “construct” the Quaternion Algebra over R, discuss
its geometry, provide insight into it’s physical applications, and outline the proof of
Frobenius’ classification of division algebras over R.

2 Preliminaries

An Algebra is a vector space over a field that is closed under an associative multipli-
cation operation in addition to its properties as a vector space.

A Quadratic Form is a commutative map ((a, b) = µ(b, a)) X × X → K, where
X is a finite-dimensional vector space over the field K. N(a), taking the value (a, a) or
(a, a)1/2, is known as the norm of a ∈ X. A vector space is referred to as “normed” if it
has a quadratic form. If K = R, the norm gives X a partial ordering. [3]

If X is a Division Algebra, it is a vector space X over field K that can be treated as
a division ring with no zero divisors if it is associative (the only cases we will consider).
Thus X has multiplicative inverses, a multiplicative identity, is an abelian group under
vector addition, and for a, b ∈ X, ab = 0 ⇒ a = 0 or b = 0. Multiplication in X is
known as a bilinear product, β : X × X → X, meaning that for any a ∈ X, maps
where x 7→ β(x, a) or x 7→ β(a, x) are linear for all x ∈ X. [3]

3 Quaternion Algebras

A Quaternion Algebra H is a normed (associative) division algebra of dimension 4
with quadratic form equivalent to the familiar inner product of vectors in Rn, justifying
our referring to N(q) as the “magnitude” of q in H. If K = R, N(q) = (q · q)1/2. The
bilinear map in H is the unique Quaternion Product computed below using results from
(1).
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3.1 Computations and Ring Structure

Elements in H can most readily be understood as linear combinations of basis elements
(1, i, j,k), written

q = a1 + bi + cj + dk

for (1, a, b, c, d) ∈ K, however it is often easier computationally to denote them as
q = [r,v], where r = re(q) ∈ K is the scalar or “real” component of q, the coefficient of
1, and v = im(q) = bi+ cj+dk is known as the imaginary component. q = [a, 0] implies
that q ∈ Re(H) ∼= R, while q = [0,v] implies q ∈ Im(H) ∼= R3. It is assumed that
the reader is familiar with the operations of vector addition and scalar multiplication
common to all vector spaces, as well as the cross and dot product of vectors in R3 from
multivariate calculus, denoted v1 × v2 and (v1 · v2), respectively. For the following
operations, α ∈ K and qi ∈ H with components alphabetized as the initial stating of q:

Inner Product and Norm

(q1 · q2) = a1a2 + b1b2 + c1c2 + d1d2

= re(q1)re(q2) + (im(q1) · im(q2))

N(q1) = (q1 · q1)1/2

=
√

re(q1)2 +N(im(q1))2

Quaternion Product

q1q2 = (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2)
+ (a1b2 + a2b1 − c1d2 − d1c2)i
+ (a1c2 − b1d2 + c1a2 − d1b2)j
+ (a1d2 + b1c2 − c1b2 + d1a2)k

= [re(q1)re(q2)− im(q1) · im(q1), re(q1)im(q2) + re(q2)im(q1) + im(q1)× im(q2)]

To show that theH contains inverses, define the conjugate of q ∈ H to be [re(q),−im(q)],
and consider the following computation:

q

(
q

N(q)2

)
= [re(q), im(q)][re(q),−im(q)]

1

N(q)2

=
[(re(q))2 + im(q) · im(q), re(q)im(q)− re(q)im(q) + im(q)× im(q)]

N(q)2

=
[N(q)2,0]

N(q)2

= 1
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and we have the inverse of q defined to be q

N(q)2
. Multiplication is associative (trust

me) but not commutative, as shown by (1) and (2), while inner products are associative
and commutative, which arises from basic field properties. An important quality of H
borrowed from more familiar vector spaces is the homomorphic ”norm property”: the
norm of a quaternion product is equal to the field product of the norms. Let x1 = [r1, i1],
x2 = [r2, i2], and observe:

N(xy) = N([r1r2 − (i1 · i2), r1i2 + r2i1 + (i1 × i2)])
= ((r1r2)

2 − 2r1r2(i1 · i2) + (i1 · i2)2 + ({r1i2 + r2i1}+ i1 × i2) · ({r1i2 + r2i1}+ i1 × i2))1/2

= ((r1r2)
2 − 2r1r2(i1 · i2) + (i1 · i2)2 +N(r1i2 + r2i1)

2 + 2(i1 × i2 · (r1i2 + r2i1)) +N(i1 × i2)2)1/2

= ((r1r2)
2 − 2r1r2(i1 · i2) + (i1 · i2)2 + r1

2N(i2)
2 + r2

2N(i1)
2 + 2r1r2(i1 · i2) +N(i1 × i2)2)1/2

= ((r1r2)
2 + r1

2N(i2)
2 + r2

2N(i1)
2 +N(i1)

2N(i2)
2)1/2

= (r1
2 +N(i1)

2)1/2(r2
2 +N(i2)

2)1/2

= N(x)N(y).

A bit messy, this vital property allows for many applications of the quaternions to
geometry and physics. Notice that we are employing the the fact that i1 × i2 ⊥ {i1, i2},
and the inner product of orthogonal vectors is zero, along with the following properties:

(i1 · i2)2 +N(i1 × i2)2 = N(i1)
2N(i2)

2 (3)

i1i2 = −(i1 · i2) + i1 × i2 (4)

3.2 Basic Substructures

Re(H) is the set of all real quaternions. It contains the multiplicative identity [1, 0],
1 ∈ K, and for x ∈ Re(H), x−1 and −x are clearly contained in Re(H), making it a
subspace of H. It is also the center of H, making it a field. Let c = [r1, i1] commute
with all q = [r2, i2] ∈ H. Then,

0 = cq − qc = [r1r2 − i1 · i2, r1(i2) + r2(i1) + i1 × i2]
− [r2r1 − i2 · i1, r2(i1) + r1(i2) + i2 × i1]
= [0, i1 × i2 − i2 × i1]
= [0, 2(i1 × i2)]⇒ c = q or c = [r1, 0]

This is a product of that fact that all pure components of quaternions can be visualized
as vectors extending from the same origin, thus there exist no “parallel” quaternions
to lead to a cross product of zero. We can form a trivial isomorphism t : R → Re(H)
defined by t(r) = r[1, 0], and because of this H is a central simple algebra: its center
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is the field it is defined on, and it contains only trivial two-sided ideals (left to the or-
thogonal pure quaternions).

Im(H) is then the set of all pure quaternions, equal to Re(H)⊥, the orthogonal com-
plement of Re(H), meaning ∀r ∈ Re(H)⊥ and ∀i ∈ Re(H), (r · i) = 0. Im(H) is also a
subspace, containing all additive inverses, and is isomorphic to any dimension 3 vector
space over a field [6], yet for pure qi, qi

2 = [c, 0] for some c ∈ K and q1q2 = [−q1 ·q2, q1q2],
thus Im(H) is not closed under multiplication unless we are considering only multipli-
cation between orthogonal pure quaternions.

Lemma 1: H = Re(H)⊕ Im(H).
Proof: As noted, Re(H) ∪ Im(H) = {0}, and both Re(H) and Im(H) are subspaces.
Together with the facts Re(H)⊥ = Im(H), Im(H)⊥ = Re(H) and dim(H) = 4 = 1+3 =
dim(Re(H)) + dim(Im(H)), this is a valid direct sum decomposition of H. So any el-
ement of H can be written as a sum of real and pure quaternions. As it turns out, in
any finite dimensional division algebra A, such a decomposition is possible between the
center of A and its orthogonal complement, the center being isomorphic to the field that
A is defined on. Also for any division algebra, for imaginary q, q2 = [−c, 0] for some
c ∈ K. Notice that all unit pure quaternions are solutions to the equation x2 = −1. [3]
[2].

H∗ is the set of nonzero quaternions, which is a non-abelian group under the quaternion
product. H∗ contains the identity, inverses, and the quaternion product is associative.

U(H) is the set of all unit quaternions (N(q) = 1), also known as versors. It is
valid a subgroup of H∗ (and a subspace of H, but this is less exciting) because the norm
property forces all versor products and inverses of versors to be versors, so U(H) has
inverses and is closed under the quaternion product. We will show how versors can act
as geometric operators in the next section. [4]

4 Quaternion Geometry: U(H)→ SO(3)

4.1 Geometric Preliminaries

We will denote the Euclidean n-dimensional space (En) by Rn, because at most n
coordinates are needed to locate each point in En, and it is useful to treat this region
as a vector space over R. A similarity on Rn is a map that preserves shape, such as
the inner angles of a polygon, and the set of similarities on Rn, a group under function
composition, can be made the direct product of maps that preserve size (isometries)
and maps that alter size. The group of isometries, GO(n), contains all translations and
reflections. Note that all rotations can be formed from a series of reflections [5]. Two
objects are considered congruent if one can be transformed into another by a finite
number of isometries. If L is a finite subgroup of congruences in Euclidean n-space, L
can be described by a set of points that it fixes. [5]
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The General Orthogonal Group (GO(n)) is the set of isometries of an n-dimensional
Euclidean space with operation being the composition of mappings. [5]

The Special Orthogonal Group (SO(n) or Spinn) is the subgroup of GO(n) consist-
ing of all simple rotations, or maps that fix n − 2 dimensions. SO(n) is chiral,
meaning that it preserves orientation.

mdotq is the general finite subgroup of SO(n) containing all rotations about an axis q
generated by θ = 2Pi/m, m ∈ Z.

4.2 Properties of Rotation

Rotations are bijections from Rn to Rn, and so can be displayed as matrices [6]. By
fixing n − 2 dimensions, rotations are characterized by an angle θ about an axis-vector
tangent to the plane of the 2 remaining dimensions. Therefore, if A is a rotation matrix
corresponding to axis v, then Av = v, and A has an 1 as an eigenvalue [6]. The inverse
of a rotation can be denoted by either −θ or an antiparallel axis-vector.

Lemma 2: All rotations correspond to orthogonal matrices of determinant 1.
Proof. Recall that a matrix whose inverse is its adjoint (transpose, conjugate) is orthog-
onal. A rotation matrix A must preserve inner products, which can be written v1

tv2,
thus we have

v1
tv2 = (Av1

t)Av2

= v1
t(AtA)v2

⇒v1
t(I −AtA)v2 = 0

⇒A is Orthogonal,

and then,

(det(A))2 = det(At)det(A)

= det(AtA) = det(I) = 1,

which implies det(A) = 1 because it is orientation preserving (det(A) = −1 would imply
that A inverst the axis of rotation) [7].

4.3 Rotations by Group Action

Lets form the bijection G : R → Im(HR), which is valid because vector spaces of equal
dimension over the same field are isomorphic [6]. Now examine the map πq1,q2 : v →
q1G(v)q2, for two othogonal, pure quaternions over of the reals. Let q1 = i1, G(v) = i3,
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and q2 = i4:

πq1,q2(v) = q1G(v)q2 = (0, i1)(−i2 · i3, i2 × i3)
= (0,−(i2 · i3)i1 + i1 × (i2 × i3))
= (0,−(i2 · i3)i1 + i2(i1 · i3)− i3(i1 · i2))
= (0,−(i2 · i3)i1 − (i1 · i2)i3)

If we now apply G−1, we have formed a similarity of Euclidean 3-space that multiplies
magnitudes by

√
N(q1)N(q2), remembering that N(q1vq2) = N(q1)N(v)N(q2) [5]. If

N(q1q2) = 1, we are dealing with unit, pure quaternions, and π becomes an isometry
[5]. We have just gotten a taste of how geometric objects can be manipulated using
quaternions, and we are leading up to the map in the title of this section.

Lemma 3: Any unit quaternion q can be written q = [cos(θ), sin(θ)u], for some θ ∈ R
and unit pure quaternion u.
proof. We know that q = [r, i], and that (N(q))2 = 1 = r2+ i · i. Let θ = sin−1(

√
1− r2),

and sin2(θ) = i · i = 1− r2 ⇒ r = cos(θ).
We can now simplify multiplication in U(H) if we have two quaternions that share u:

[cos(θ), sin(θ)u][cos(β), sin(β)u] = (cos(θ)cos(β)− sin(θ)u · sin(β)u

+ (cos(θ)(usin(β)) + cos(β)(usin(θ) + usin(θ)× usin(β)

= [cos(θ + β), sin(θ + β)u],

using Trigonometric identities. Now we can interject with the following observation:
For m 6= 0 ∈ Z,

[cos(
2π

m
), sin(

2π

m
)u]

forms a finite subgroup of U(H) that is isomorphic to Zm. (Proof left to reader).

Now finally, we can prove that T : U(H) → SO(3) is a 2-1 homomorphism, which
leads to the direct correspondence between the finite subgroups of U(H) and the finite
subgroups of SO(3), {mdotq}:
Let αu ∈ SO(3) denote a rotation of any v ∈ R3 by angle α about the unit vector u ∈ R3,
acting as the axis of rotation. Because u and v form their own plane, Write v = a + n
for a||u and n ⊥ u. Now using maps G and πq above (where q1 = [cos(α2 ), sin(α2 )u],
q2 = q1

−1 = q̄1), we can show that T (q) = πq = αq. Remember that multiplication in H
distributes across addition, thus πq(v) = πq(a) + πq(n) = a+ πq(n), because a lies along
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u, and so is unchanged by πq. Now for πq(n) compute the following:

q̄(n)q = (cos2(
α

2
)− sin2(α

2
)N(u)2)n

+ 2(u · n)q + 2cos(
α

2
)sin(

α

2
)(u× n)

= (cos2(
α

2
)− sin2(α

2
))n+ 2cos(

α

2
)(u× n)

= cos(α)n+ sin(α)n⊥

where n⊥ = (u × n). It is not hard to tell that n has made a rotation of α about q,
while maintaining its norm. The homomorphic property falls out of Lemma 3 and the
well-defined composition of maps in SO(3). The fact that T (q) = T (−q) makes this a
2-to-1 surjective homomorphism. Therefore, any rotation in SO(3) can be reduced to a
single quaternion up to sign.

We can also call R3 ∼= Im(H) a U(H)-set by means of group action conjugacy of
elements in U(H), writing (q,v)→ q−1vq. The two properties of group action in [8] are
satisfied as follows:

1. ∀v, (1,v)→ 1−1v1 = v
q2(q1,v)→ (q2, q1

−1vq1)→ q2
−1q1

−1vq1q2 = q2
−1(w)q2 = z

The “orbits” (O(v))then have an especially nice interpretation: as spheres of radius
N(v), while the entire action of any q ∈ U(H) is equal to a rotation of the entire three
dimensional space about q by its corresponding angle.

4.4 Physical Applications

Hopefully it is now apparent that R-valued quaternion algebras can be applied to physi-
cal and virtual scenarios. The simplest of these is the rotation of a rigid body in 3-space,
and indeed Quaternions have been used in Aerospace technology to track satellite orbits
and locate distant objects. They have also been used in computer graphics. A benefit
of quaternions in real and virtual navigation is the avoidance of Gimbal Lock, a subject
I will address in class. [7]

5 Frobenius’ Theorem

The purpose of closing with this theorem is to put Quaternion Algebras, specifically
those over the Reals, into a larger algebraic context. Hamilton initially opened up new
mathematical pathways with his astounding display of possible extensions to the existing
number fields, such that the following is often written:

N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H.

These pathways were soon after shown themselves to be finite, with each step further
from R leading to the sacrifice of a vital algebraic attribute. From Real to Complex we
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lose ordering, from Complex to Quaternions we lose commutativity, and beyond the fol-
lowing limits established by Frobenius, the Octonions have been built at the sacrifice of
associativity. We could continue, constructing then a 16-dimensional “algebra” that fails
at something else, or we could work with what we have, which seems infinite nonetheless.

Theorem: Assume A is an algebra with unit and no zero divisors over R. Then the
following are equivalent:

2.1. The algebra A, considered as a vector space over R, is finite dimensional.

2. Every element in A is algebraic.

3. Every element x ∈ A can be uniquely represented as

x = r + z, r ∈ Re(A), z ∈ Im(A)

where Im(A) = {z ∈ A : z2 ∈ and z2 ≤ 0.}

4. Every element x ∈ A is at most quadratic, such that it satisfies either

x− r = 0 or (x− p)2 + q2 = 0

for r, p, q ∈ R.

5. The algebra A is isomorphic to one of the following: R, C, or H.

We will prove the theorem in a circular fashion, n⇒ n+1, where (5)⇒ (1) immediately
follows.

1⇒ 2 Let dim(A) = n. Then for x ∈ A,

{1, x, x2, x3, ..., xn}

is a linearly depedent set, therefore ∃{αi} ∈ R such that

n∑
i=0

αix
i = 0.

Let p(q) =
∑n

i=0 αiq
i, and p(x) = 0.

2⇒ 3 As a division algebra, we know that Z(A), the center of A, is isomorphic to the
field it is defined on, namely R, and that the direct sum of Z(A) and Z(A)⊥ gives
us A. (Caution: if A is dimension 2, this direct sum is trivial because Z(A) ∼= C,
but remember that elements in C are already of the form z = Re(z) + Im(z). It
is shown in [2] that this carries over to any vector space over C.) Therefore any
element x ∈ A can take the form x = r + i for r ∈ Z(A) and i ∈ Z(A)⊥. For
uniqueness, assume x = r′ + i′ as well, and that r 6= r′, i 6= i′. Then

i2 = (r′ − r + i′)2 = (r′ − r)2 + i′
2

+ 2(r′ − r)i′

and because i2 ∈ Z(A), i′ ∈ Z(A), a contradiction unless r = r′, which would
imply that i = i′.
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3⇒ 4 This step is a little more involved than it seems. We will need to extend some
properties from C to higher dimensional division algebras. First, allow the funda-
mental theorem of algebra to hold for all division algebras [2]. A proof of this for
H can be foung in [9] involving stereographic projections of limits at infinity on a
4-sphere, derivatives of quaternion-valued functions, and notions of analyticity in
the 4-dimensional realm of H. Define conjugation for A as in the complex world,
x = r− i, and it is not hard to see that q1 + q2 = q1 + q2 for q1, q2 ∈ A by grouping
real and imaginary components. The property z1z2 = (z1)(z2), for zi ∈ C for
higher dimensional algebras becomes q1q2 = q2q1:

q1q2 = [r1r2 − i1i2,−(r1i2 + r2i1 + i1i2)]

= [r1r2 − i1i2,−r1i2 − r2i1 + i2i1)]

= [r2,−i2][r1,−i1]
= (q2)(q1),

where it is understood that −i1i2 = i2i1 from vector calculus. Now we can prove
the following lemma.

Lemma 4 If let P (q) = a0 + a1q + a2q
2 + · · · + anq

n = 0 for q ∈ A and ai ∈ R,
then P (q) = 0.
Proof.

0 = 0 = P (q) =
n∑
i=0

aiqi

=
n∑
i=0

aiq
i

So roots from A come in conjugate pairs as in the Complex world.
Now lets examine the factorization of a generic polynomial p(x) with real coef-
ficients, indeterminant x and at most n roots from A. We know that p(x) can
be factored into irreducible polynomials with real coefficients, which are at most
quadratic [8]. Knowing that roots from A come in conjugate pairs, for root a ∈ A
we have

(x− a)(x− a) = x2 − ax− ax+ aa

= x2 − 2rx+ r2 − i · i+ ri− ri+ i× i
= ((x− r)2 − i · i)

and i · i ∈ R, therefore quadratic factors take the desired form, with linear factors
equal to (x−m) for m ∈ R.
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4⇒ 5 First note that Z(A)⊥ is a vector space over R, if we consider that 0 ∈ A takes
the form [0, 0]. Now let us consider possible dimensions of I:
Dim(I) = 0: In this case I = {0}, and A ∼= R by means of r1→ r, for unit vector
1 in A.

Dim(I) = 1: Now take any z ∈ I, z 6= 0. Because z = beI for b ∈ R and
basis element of I, eI , take any a ∈ Z(A) ∼= R, az = ab(eI) ∈ I. We know
z−1 ∈ Z(A)⊥ and so is also a multiple of eI , say aeI , thus using the commutativity
of real numbers, 1 = zz−1 = ±(ba)(eI)(eI)⇒ eI

2 = ±1 and because e2I = +1
would imply eI = ±1, we know eI

2 = −1. Thus if Dim(I) = 1, and A ∼= C.
Dim(I) ≥ 2: In this case A has at least three linearly independent vectors
{1, e1, e2} that make up a basis for I. From the existence of inverses and our
previous cases, we know that e1

2 and e2
2 exist in Z(A) as −1. Now consider a

relation of linear dependence

αe1 + βe2 + γe1e2 = 0.

A nontrivial solution {α, β, γ} ∈ R would first imply that γ 6= 0, because we
already know that αe1 + βe2 = 0 has only trivial solutions. So we have,

−e2 =
α

γ
+

β

γe1
e2,

but because any element of A can be separated into Real and Imaginary parts,
and −e2 ∈ I, we have α = 0 ⇒ −1 = β

γ e1
−1 ⇒ e1 ∈ R, a contradiction. So

if Dim(I) ≥ 2, Dim(I) is at least 3, such that {1, e1, e2, e1e2} make a linearly
independent set. We now have a basis satisfying Hamilton’s original quaternion
relations, therefore any 4-dimensional division algebra is isomorphic to H. If we
suppose that a greater-dimensional division algebra exists, it can be shown that no
multiplication rules exist that lead to a closed algebra that maintains associativity
[2].

5⇒ 1 This last step is implied, and we have completed the proof.

6 Conclusion

Quaternion Algebras are a versatile tool for both purely algebraic study and phys-
ical application. They represent an area of linear algebra that has been completely
demystified, but their failure to provide associativity has made them cumbersome
objects to incorporate into the mainstream of tools for modeling physical phe-
nomenon. Considering that a 9-part rotation matrix can be reduced to a 4-part
quaternion, however, H over the Reals is worth being familiar with if a rigorous
classification of spacial manipulations is desired.
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7 Exercises

1. Prove that for any pure quaternion q ∈ HR, the map ρq : Im(HR)→ Im(HR)
given by ρ(x) = −qxq−1 is a bijection, and is equal to a reflection in GO(3)
(remember that reflections correspond to a fixed plane).

2. Prove that the following matrix serves as an automorphism of H correspond-
ing to a single quaternion. What is that quaternion?

1
2 −1

2 −1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2

.
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