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1 Introduction

An algebraic approach to graph theory can be useful in numerous ways. There
is a relatively natural intersection between the fields of algebra and graph theory,
specifically between group theory and graphs. Perhaps the most natural connection
between group theory and graph theory lies in finding the automorphism group of a
given graph. However, by studying the opposite connection, that is, finding a graph
of a given group, we can define an extremely important family of vertex-transitive
graphs. This paper explores the structure of these graphs and the ways in which we
can use groups to explore their properties.

2 Algebraic Graph Theory: The Basics

First, let us determine some terminology and examine a few basic elements of graphs.
A graph, Γ, is simply a nonempty set of vertices, which we will denote V (Γ), and a

set of edges, E(Γ), which consists of two-element subsets of V (Γ). If {u, v} ∈ E(Γ),
then we say that u and v are adjacent vertices. It is often helpful to view these
graphs pictorially, letting the vertices in V (Γ) be nodes and the edges in E(Γ) be
lines connecting these nodes.

A digraph, D is a nonempty set of vertices, V (D) together with a set of ordered
pairs, E(D) of distinct elements from V (D). Thus, given two vertices, u, v, in a
digraph, u may be adjacent to v, but v is not necessarily adjacent to u. This relation
is represented by arcs instead of basic edges. The arc set of a digraph, D, is denoted
A(D).
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It is not uncommon for two graphs to have the same structure. We can examine
this situation more carefully by considering isomorphisms of graphs. An isomorphism
from a graph Γ1 to Γ2 is a function φ that preserves adjacency; that is, if {u, v} ∈ EΓ1,
then {φ(u), φ(v)} ∈ EΓ2. We can of course extend this idea to an isomorphism of a
graph Γ to itself, thus leading us to the study of graph automorphisms.

Graph automorphisms and groups are closely related structures. A graph au-
tomorphism is simply a bijection, φ : Γ → Γ, that permutes the the vertices of Γ
while preserving adjacency. Let us consider the set of all automorphisms of a graph,
Γ. The identity map is of course an element of this set since it preserves adjacency.
Given any automorphism, φ, φ−1 is also an automorphisms, and given any two au-
tomorphisms φ1, φ2, φ1 ◦ φ2 is of course an automorphism. Therefore, the set of all
automorphisms of a graph Γ is a group under the operation of function composition.
We will denotes this group Aut(Γ) and will commonly refer to it as the group of Γ.
Before considering an example, let us first present a definition.

Definition. A graph is complete if each vertex is connected to every other vertex.
We will denote the complete graph on n vertices by Kn.

Example 1. Below is the connected graph, K5.
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Consider the automorphism group of the above graph. Since all vertices are
connected to one another, any permutation of the vertices will preserve adjacency.
Therefore, the automorphism group of K5 is S5, the set of permutations on 5 ele-
ments. It can easily be deduced, then, that the automorphism group of any complete
graph, Kn, has automorphism group Aut(Kn) = Sn. Any disconnected graph on n
vertices will therefore have an automorphism group that is a subgroup of Sn.

3 Cayley Graphs

As previously explored, given any graph, Γ, we can find an automorphism group,
Aut(Γ). This fact, however, raises another question. That is, given any group G,
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can we find a graphic representation of this group. More specifically, can we find a
graph whose group is isomorphic to G. This question leads us to the study of Cayley
Graphs.

There are three main types of Cayley graphs: Cayley Digraphs, Cayley Color
Graphs, and Simple Cayley Graphs. We will define and discuss the first two briefly,
while focusing the majority of our attention on the latter of the three.

3.1 Cayley Color Graphs

Definition. Let G be a group, and let S be subset of G. Then the Cayley Digraph
D(G,S) on G with connection set S is defined as follows:

1. The vertices are the elements of G
2. There is an arc joining g and h if and only if h = sg for some s ∈ S.

We can extend this idea to a Cayley Color graph, where S is a generating set for
G, each si ∈ S is assigned a color, and if g = sih, then the arc connecting them is
colored si.

Example 2 shows the Cayley Color graph of S3 with connection set S = {a, b}
where a = (123) and b = (12). Notice that it is often helpful to represent each group
element in terms of group presentations, thus displaying the arcs more clearly.

Example 2. Cayley color graph of S3 defined on S = {(123), (12)}.
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Now let us examine the automorphism groups of these Cayley color graphs. First,
let us present another definition.
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Definition. An automorphism φ ∈ Aut(D(G,S)) is color-preserving if given an
arbitrary arc, {g, h}, {g, h} and {φ(g, φ(h)} have the same color.

Before presenting the main theorem, we must first present an intermediate result.

Proposition 1. Let G be a group with generating set S and let φ be a color-preserving
permutation on V (D(G,S)). Then φ is a color preserving automorphism of D(G,S)
if and only if φ(gh) = φ(g)h.

Proof. We will prove one side of this theorem, leaving the other as an exercise pre-
sented at the end of this paper. (See exercise 2). Suppose that φ(gh) = φ(g)h. To
show that φ is color-preserving, we need to show that if gh−1 = s, then φ(gh−1) = s.
Suppose gh−1 = s. Then

φ(gh−1) =φ(g)h−1

=φ(g)g−1s

=φ(gg−1)s

=s.

Theorem 2. Let G be a nontrivial group with generating set S. Then the group of
color-preserving automorphisms of D(G,S) is isomorphic to G.

Proof. Let G be a group of order n and gi ∈ G for 1 ≤ i ≤ n. Define the map
φi : V (D(G,S))→ V (D(G,S)) by φi(g) = gig.

This map is surjective, since given any g ∈ V (D(G,S)), g = φi(g
−1
i g). This map

is also injective since if φi(g1) = φi(g2), gig1 = gig2 and thus g1 = g2. Now, let
g1, g2 ∈ G. By Proposition 1, φi is a color preserving automorphism since

φi(g1g2) = gi(g1g2) = (gig1)g2 = φi(g1)g2

Now, let A = {φi : 1 ≤ i ≤ n} and define a map α : G → A by α(gi) = φi. We
must verify that this map is an isomorphism from G to the groups of color preserving
automorphisms. This map is injective since φi 6= φj when i 6= j. We will show the
map is surjective by proving that for any color preserving automorphism φ, φ = φi

for some φi ∈ A.
Let e be the identity element of G and let φ(e) = gi. Given an arbitrary element

gj ∈ G, we can write this element as a product of generators from our generating set
S. Let gj = sr11 s

r2
2 ...s

rm
m . Then by Proposition 1 we can write,
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φ(g) = φ(eg) = φ(esr11 s
r2
2 ...s

rm
m ) = φ(e)r1s

r2
2 ...s

rm
m = gig.

Therefore, φ = φi and α is surjective.
Finally, we must show that α preserves the group operation. Since

φij(g) = (gigj)g = gi(gjg) = φi(gjg) = φi(φj(g))

we can deduce that,

α(gigj) = φij = φi ◦ φj = α(gi) ◦ α(gj)

Thus, we have shown that given any group G, we can construct a colored digraph
representation of this group whose color-preserving automorphism group is isomor-
phic to G itself. We will now turn our attention to a more generalized version of
Cayley Graphs and examine their properties.

3.2 Simple Cayley Graphs

Simple Cayley graphs make up a large amount of graphs in an important family of
graphs called vertex transitive graphs. They are defined nearly identically as Cayley
Digraphs, however they contain an edge set instead of an arc set, and the connection
set S must be closed under inverses. More specifically, if s ∈ S, then s−1 ∈ S.
To further understand these graphs, let us first consider the motivation behind this
restriction on S.

Given a Cayley Digraph D(G,S), we know that there exists an arc u, v if and
only if u = sv. However, if s−1 ∈ S, then v = s−1u and therefore v, u is also an
arc. Thus, we can replace these two arcs by a simple edge. This restriction on S
thus replaces every pair of arcs with an edge, turning our digraph D(G,S) into a
simply Cayley graph. We will denote the simple Cayley graph of a group G on the
connection set S by Cay(G,S).

To study these graphs further, let us first review some definitions and theorems
about Group Actions.

Recall that given a group G acting on a set V , x, y ∈ V are G-equivalent if gx = y
for some g ∈ G. This G-equivalence is an equivalence relation on V . Each partition
of V into such an equivalence class is called an orbit of V under G. Also recall that
the stabilizer subgroup of G for an element x ∈ V , denoted Gx, is the set of all group
elements in g that fix x. That is, Gx = {g ∈ G : gx = x}. Now let us present a new
definition.
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Definition. A graph Γ is vertex transitive if there exists a single orbit of V (Γ) under
Aut(Γ). That is, given any v, u ∈ V (Γ) there exists a φ ∈ Aut(Γ) such that φ(v) = u.

Theorem 3. Every Simple Cayley graph is vertex-transitive

Proof. Let ρg : v → vg for all v ∈ V (Cay(G,S)). Clearly, ρg permutes the el-
ements of V (Cay(G,S)). To show that ρg ∈ Aut(Cay(G,S)) we must show that
{v, u} ∈ E(Cay(G,S)) if and only if {vg, ug} ∈ E(Cay(G,S)). Suppose {v, u} ∈
E(Cay(G,S)). Then we know that v = su for some s ∈ S or equivalently, vu−1 = s.
But vg(ug)−1 = vgg−1u−1 = vu. Therefore, {v, u} ∈ E(Cay(G,S)) if and only if
{vg, ug} ∈ E(Cay(G,S)) and ρg is in the group of Cay(G,S).

Now, given any vertices, v, u the mapping ρv−1u maps v to u since vv−1u = u.
Thus, any Cayley graph is vertex-transitive.

Just as a subgroup of an automorphism group for a Cayley Color Graph of G con-
tained a subgroup isomorphic to G, simple Cayley graphs possess a similar property.
First let us define a bit more terminology.

Definition. A group G acting on a set V is semiregular if Gv = e for all v ∈ V . If
a group is semiregular and transitive, then we say it is regular.

Theorem 4. Let G be a group and S be an inverse-closed subset of G. Then
Aut(Cay(G,S)) contains a regular subgroup isomorphic to G.

Proof. Let G be group with connection set S and Cay(G,S) be the Cayley graph
for G defined on S. Now, consider the mapping ρg as described in Theorem 3. We
know that ρg ∈ Aut(Cay(G,S)), and it can easily be shown that H = {ρg : g ∈ G}
is a subgroup of G. This group acts regularly on G since it is clearly semiregular,
and is also transitive by the proof of Theorem 3. The map φ : H → G defined
by φ(ρg) = g is an isomorphism by Cayley’s Theorem (see Judson 9.6). Thus,
H ≤ Aut(Cay(G,S)) is isomorphic to G.

It is natural to ask whether all vertex-transitive graphs are Cayley graphs. This
question was negatively answered by the counter-example of the Peterson Graph.
The following Theorem gives us criteria for when a graph is indeed a Cayley graph
for some group.

Theorem 5. If a group G acts regularly on the vertices of the graph Γ, then Γ is a
Cayley graph for G relative to some inverse-closed connection set S.
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Proof. Let Γ be a graph with degree n and let G be a group that acts normally
on V (Γ) = v1, v2, ..., vn. Since G acts normally on Γ, there exists a unique element
gi ∈ G such that giv1 = vi. Now, define a set S by

S = {gi ∈ G : {vi, v1} ∈ E(Γ)}.

Now, let x, y be arbitrary elements in V (Γ). Then since gx is an automorphism
of Γ, so {x, y} ∈ E(Γ) if and only if {g−1x x, g−1x y} ∈ E(Γ).

Since gxu = x, g−1x x = u. Furthermore, since gyu = y, gx−1gyu = gx−1y. There-
fore,

gx−1gy ∈ S ↔ {u, gx−1y} ∈ E(Γ) ↔ {gx−1x, gx−1y} ∈ E(Γ) ↔ {x, y} ∈ E(Γ).

So, if we identify every vertex, x, with the group element gx, then Γ = Cay(G,S).
Since Γ is undirected, S is closed under inverses.

So, given any graph, Γ and a subgroup G of Aut(Γ), G acts regularly on V (Γ) if
and only if Γ is a Cayley graph for G for some connection set S.

Notice that our definition of a simple Cayley graph does not require our connec-
tion set to be a generating set for G. Our next Theorem shows the consequence of
S being a generating set for G. First, let us present two definitions.

Definition. A path of length r from vertex x to vertex y in a graph is a sequence
of r + 1 distinct vertices starting with x and ending with y such that consecutive
vertices are adjacent.

Definition. A graph, Γ is connected if there is a path between any two vertices of
Γ.

Theorem 6. The Cayley graph Cay(G,S) is connected if and only if S is a generating
set for G.

Example 3. Consider the the group G = Z5 with connection set S = {2, 3}. Since
0 + 2−1 = 3, 0 + 3−1 = 2, 1 + 3−1 = 3, 1 + 4−1 = 2, 2 + 4−1 = 3, below is the graph,
Cay(G,S).
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Notice that the graph is connected, since S is a generating set for G.

3.3 Graphical Regular Representation

We know that given a group G and a connection set S, there is a subgroup of
Aut(Cay(G,S)) that is isomorphic to G. Often, this subgroup is a proper subgroup
of Aut(Cay(G,S)), meaning the entire Aut(Cay(G,S)) is not isomorphic to G. Con-
sider, for example G = S3. When might it be the case that Aut(Cay(G,S)) is itself
is isomorphic to G? This question has been successfully answered in the case of finite
abelian groups.

Definition. A group G admits graphical regular representation if the automorphism
group of Cay(G,S) ∼= G.

Let us again provide an intermediate result before presenting our main theorem
for this section.

Proposition 7. Let Cay(G,S) be a Cayley graph for G defined on the connection set
S. Suppose that φ is an automorphism of the group G that fixes S set-wise. Then φ,
regarded as a permutation of the vertices of Cay(G,S) fixes the vertex corresponding
to the identity element of G.

Proof. Let φ be a group automorphism. φ must fix the the identity element since φ is
a group automorphism. Let us show that φ is a graph automorphism. Suppose that
v, w are adjacent vertices. Then vw−1 ∈S.Therefore,φ(vw−1) ∈ S. But φ(vw−1) =
φ(v)φ(w−1) so φ(v) and φ(w) are adjacent. Therefore, φ preserves adjacency and is
a graph automorphism.

Theorem 8. Let Γ be a vertex-transitive graph whose automorphism group G =
Aut(Γ) is abelian. Then G acts regularly on V (Γ), and G is an elementary abelian
2-group.

Proof. Suppose Γ is a vertex-transitive graph with automorphism group G = Aut(Γ).
Let g, h ∈ G. Suppose that g fixes an arbitrary vertex v ∈ V (Γ).

gh(v) = hg(v) = h(v)

Therefore, g fixes h(v) as well. However, since G acts transitively on V (Γ) any
vertex, u can be written as h(v) = u for some h ∈ G. Thus, g fixes every vertex and
the stabilizer is the identity. Therefore, G acts regularly on V (Γ) and Γ = Cay(G,S)
for some connection set S.
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Now consider the map g → g−1. This map preserves adjacency since Aut(Γ) is
abelian and is therefore a graph automorphism. Furthermore, since S is closed under
taking inverses, this mapping fixes S set-wise. Thus, by Proposition 7, this map
must fix vertex 1. But since G acts regularly on V (Γ), this map must be the identity
map. Therefore, g = g−1 and G is an abelian-2 group.

Let us think for a moment what this theorem officially states. By Theorem 5,
we know that if G acts regularly on a graph Γ, then Γ is a Cayley graph for G.
Therefore, we know that if a graph has an abelian automorphism group, then this
abelian group has a graphical regular representation. Furthermore, we know that
this can only happen when G is an abelian 2-group. Thus, the only abelian groups
that have a graphical regular representation are abelian-2 groups.

4 Isomorphisms of Cayley Graphs

The final topic we will examine in the study of Cayley Graphs is that of isomor-
phisms. Determining when Cayley graphs are isomorphic to one another can in
fact be a very difficult task. Thus, the bulk of this research has been focused on
Cayley graphs of Abelian, or cyclic groups. Due to the complexity of this topic,
this paper only briefly examines properties of isomorphic Cayley graphs; however,
Beineke, a source listed in the final theorem of this section provide a much more
thorough examination of Cayley graph isomorphisms. Let us first present a rather
simple proposition regarding isomorphisms of Cayley graph, and then examine more
complex criteria for isomorphism.

Proposition 9. If φ is an automorphism of the group G, then Cay(G,S) ∼= Cay(G, φ(S)).

Proof. Given any two vertices, v, u ∈ V (Cay(G,S)), we know that v and u are
connected if and only if vu−1 ∈ S. But φ(v)φ(u−1) = φ(vu−1) ∈ φ(S) so φ(v)
and φ(w) are connected if and only if u and v are connected. Therefore, φ is an
isomorphism from Cay(G,S) to Cay(G, φ(S)).

Now, let us turn our attention to slightly more complicated situations of isomor-
phisms between Cayely graphs. First let us present another definition.

Definition. If G is a cyclic group, then the Cayely graph of G defined on some
connection set S is called a circulant. We will denote these graphs Circ(G,S).
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Now, recall that any cyclic group is isomorphic to Zn. So, for notational conve-
nience, we will refer to any cyclic group as its isomorphic copy, zn, and therefore
represent any circulant graph in the form, Circ(Zn, S).

Theorem 10. Let p be a prime. Two circulant graphs Circ(p, S) and Circ(p, S
′) are

isomorphic if and only S ′ = aS for some a ∈ Z∗p where Z∗p denotes the multiplicative
group of Zp.

Proof. We will only prove one side of this theorem, as the other side follows from
an application of Burnside’s Theorem. (See Theorem 5.1, 5.2 of Beineke). Suppose
S ′ = aS for some a ∈ Z∗p. Let φa be a map from V (Circ(Z, S)) to V (Circ(Z, S ′))
defined by φa(v) = av. Suppose v, w ∈ V (Circ(Z, S). Then v, w are adjacent if and
only if vw−1 = s for some s ∈ S. But φ(vw−1) = φ(v)φ(w−1) = avaw−1 = avw−1 ∈
aS. So, v, w are connected if and only if φ(v), φ(w) are connected so φ preserves
adjacency. We also must show that φ is both surjective and injective. First let us
show surjectivity. If v ∈ V (Circ(Zp, S

′)), then since a ∈ Z∗p is a generator for Z then
there exists a w ∈ V (Circ(Zp, S)) such that v = aw. Therefore φ(w) = v.

5 Conclusion and Exercises

As we have seen, properties of Cayley graphs have been extensively studied, and this
paper only explores some of the many interesting results. Using group structures, we
can gain more insight into the structure of these graphs, thus providing classifications
of many vertex transitive graphs.

Exercises
1. Provide the Cayley graph for G = S3 defined on the connection set S = {(12)}.
2. Prove that if φ ∈ H where H is the group of color preserving automorphisms
of a Cayley color graph, then φ(gh) = φ(g)h.
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