Due April 25

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"The road to wisdom? Well it plain and simple to express: Err and err and err again, but less and less and less." -Piet Hein, poet and scientist (1905-1996)

Problems

1. Do both of the following
(a) Judson Ch 19, \#4: Let B be the set of positive integers that are divisors of 36 . Define an order on B by $a \preccurlyeq b$ if $a \mid b$. Prove that B is a Boolean algebra. Find a set X such that B is isomorphic to $\mathcal{P}(X)$.
(b) Judson Ch 19, \#5: Prove or disprove: \mathbb{Z} is a poset under the relation $a \preccurlyeq b$ if $a \mid b$.
2. Do both of the following
(a) Judson Ch 19, \#15: Let R be a ring and suppose that X is the set of ideals of R. Show that X is a poset ordered by set-theoretic inclusion, \subseteq. Define the meet of two ideals I and J in X by $I \cap J$ and the join of I and J by $I+J$. Prove that the set of ideals of R is a lattice under these operations.
(b) Judson Ch 19, $\# 20$: Let X and Y be posets. A map $\phi: X \rightarrow Y$ is order-preserving if $a \preccurlyeq b$ implies that $\phi(a) r l t \phi(b)$. Let L and M be lattices. A map $\psi: L \rightarrow M$ is a lattice homomorphism if $\psi(a \vee b)=\psi(a) \operatorname{lor} \psi(b)$ and $\psi(a \wedge b)=\psi(a) \wedge \psi(b)$. Show that every lattice homomorphism is order-preserving, but that it is not the case that every order-preserving homomorphism is a lattice homomorphism.
3. Do both of the following
(a) Judson Ch 19, \#21: Let B be a Boolean algebra. Prove $a=b$ if and only if $\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)=O$ for $a, b \in B$.
(b) Judson Ch 19, \#22: Let B be a Boolean algebra. Prove $a=0$ if and only if $\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)=b$ for all $b \in B$.
4. Judson Ch 19, \#16: Let B be a Boolean algebra. Prove each of the following identities.
(a) $a \vee I=I$ and $a \wedge O=O$ for all $a \in B$.
(b) If $a \vee b=I$ and $a \wedge b=O$, then $b=a^{\prime}$.
(c) $\left(a^{\prime}\right)^{\prime}=a$ for all $a \in B$.
(d) $I^{\prime}=O$ and $O^{\prime}=I$.
(e) $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and $(a \wedge b)^{\prime}=a^{\prime}$ lorb $b^{\prime}($ De Morgans laws).
5. Judson Ch 19, \#10: (See page 321 of the textbook for the pictures of the three circuits.)

For each of the following circuits, write a Boolean expression. If the circuit can be replaced by one with fewer switches, give the Boolean expression and draw a diagram for the new circuit.
6. Do both of the following:
(a) Let F be a field. Find all elements a such that $a=a^{-1}$
(b) Let R be an integral domain containing a field F as subring and which is finite-dimensional when viewed as a vector space over F. Prove that R is a field.
7. Let F be a field containing exactly 8 elements. Prove or disprove that the characteristic of F is 2 .
8. Let α be the real cube root of 2 . What is the irreducible polynomial for $1+\alpha^{2}$ over \mathbf{Q} ?
9. Determine the irreducible polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over each of the following fields:
(a) \mathbf{Q}
(b) $\mathbf{Q}(\sqrt{5})$
(c) $\mathbf{Q}(\sqrt{10})$
(d) $\mathbf{Q}(\sqrt{15})$
10. Let α be a complex root of the irreducible (in \mathbf{Q}) polynomial $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in $F(\alpha)$. Write your answer in the form $a+b \alpha+c \alpha^{2}$ where $a, b, c \in \mathbf{Q}$.

