Due March 28

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"The shortest path between two truths in the real domain passes through the complex domain." – Jacques Hadamard

"Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound theories." – P. S. Laplace

"The road to wisdom? Well it plain and simple to express: Err and err again, but less and less and less." -Piet Hein, poet and scientist (1905-1996)

Problems

- 1. Determine the maximal ideals of $\mathbf{R}[x] / (x^2 3x + 2)$ where \mathbf{R} denotes the real numbers.
- 2. Prove either of the following:
 - (a) $\mathbf{Z}_{2}[x] / (x^{3} + x + 1)$ is a field.
 - (b) $\mathbf{Z}_{3}[x] / (x^{3} + x + 1)$ is not a field.
- 3. Adapt Euclid's proof of the infinitude of prime integers to show that for any field F, there are infinitely many monic irreducible polynomials in F[x].
 - (a) Also explain why this argument fails for the formal power series ring F[[x]].
- 4. Partial Fractions for polynomials
 - (a) Prove that every rational function in $\mathbf{C}[x]$ can be written as a sum of a polynomial and a linear combination of functions of the form $1/(x-a)^i$.
 - (b) Find a basis for $\mathbf{C}(x)$ as a vector space over \mathbf{C} .
- 5. Let a and b be relatively prime integers. Prove there are integers m, n such that $a^m + b^n \equiv 1 \pmod{ab}$