Due March 28

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"The shortest path between two truths in the real domain passes through the complex domain." - Jacques Hadamard
"Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound theories." - P. S. Laplace
"The road to wisdom? Well it plain and simple to express: Err and err and err again, but less and less and less." -Piet Hein, poet and scientist (1905-1996)

Problems

1. Determine the maximal ideals of $\mathbf{R}[x] /\left(x^{2}-3 x+2\right)$ where \mathbf{R} denotes the real numbers.
2. Prove either of the following:
(a) $\mathbf{Z}_{2}[x] /\left(x^{3}+x+1\right)$ is a field.
(b) $\mathbf{Z}_{3}[x] /\left(x^{3}+x+1\right)$ is not a field.
3. Adapt Euclid's proof of the infinitude of prime integers to show that for any field F, there are infinitely many monic irreducible polynomials in $F[x]$.
(a) Also explain why this argument fails for the formal power series ring $F[[x]]$.
4. Partial Fractions for polynomials
(a) Prove that every rational function in $\mathbf{C}[x]$ can be written as a sum of a polynomial and a linear combination of functions of the form $1 /(x-a)^{i}$.
(b) Find a basis for $\mathbf{C}(x)$ as a vector space over \mathbf{C}.
5. Let a and b be relatively prime integers. Prove there are integers m, n such that $a^{m}+b^{n} \equiv 1(\bmod a b)$
