## Due March 7: Problem Sheets 1, 2, 3

## Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page. "all ignorance toboggans into know and trudges up to ignorance again." - e.e.cummings, 1959

## Problems

## 1. You Must do this problem.

Let $I, J$ be ideals of a ring $R$.
(a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J=\{r \in R: r=x+y, x \in I, y \in J\}$ is an ideal. This ideal is called the sum of $I$ and $J$.
(b) Prove that $I \cap J$ is an ideal.
(c) Show by example that the set of products $\{x y: x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i, j} x_{i} y_{j}$ of products of elements of $I$ and $J$ is an ideal. This ideal is called the product ideal and is denoted $I J$.
(d) Prove $I J \subset I \cap J$.
(e) Show by example that $I J$ and $I \cap J$ need not be equal.
2. Do both of the following
(a) For which integers $n$ does $x^{2}+x+1$ divide $x^{4}+3 x^{3}+x^{2}+6 x+10$ in $(\mathbb{Z} / n \mathbb{Z})[x]$ ?
(b) Describe the kernel of the map defined by $\phi: \mathbb{Z}[x] \rightarrow \mathbb{R}$ given by $\phi(f(x))=f(1+\sqrt{2})$.
3. Do both of the following
(a) Prove the kernel of the homomorphism $\phi: \mathbb{C}[x, y] \rightarrow \mathbb{C}[t]$ given by $\phi(f(x, y))=f\left(t^{2}, t^{3}\right)$ is the principal ideal generated by the polynomial $y^{2}-x^{3}$.
(b) Describe the image of $\phi$ explicitly.
4. Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.
5. Let $R$ be a commutative ring with identity of characteristic $p$ where $p$ is a prime. Prove that if $a$ is nilpotent in $R$ then $1+a$ is unipotent, that is, some power of $1+a$ is equal to 1 . [An element in a ring is nilpotent if some positive integer power of the element equals 0 .]
6. Do one of the following.
(a) Determine the structure of the ring $\mathbb{Z}[x] /\left(x^{2}+3, p\right)$ where
i. $p=3$
ii. $p=5$
(b) Describe the ring $\mathbb{Z}[i] /(2+i)$ in terms of "more familiar" rings.
7. Describe the ring obtained from $\mathbb{Z}$ by adjoining an element $\alpha$ satisfying the two relations $2 \alpha-6=0$ and $\alpha-10=0$.
8. Suppose we adjoin an element $\alpha$ to $\mathbb{R}$ satisfying the relation $\alpha^{2}=1$. Prove the resulting ring is isomorphic to the product ring $\mathbb{R} \times \mathbb{R}$, and find the element of $\mathbb{R} \times \mathbb{R}$ which corresponds to $\alpha$.
9. Let $\alpha$ denote the residue of $x$ in the ring $R^{\prime}=\mathbb{Z}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Compute the expressions for $\left(\alpha^{3}+\alpha^{2}+\alpha\right)(\alpha+1)$ and $\alpha^{5}$ in terms of the basis $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right)$.
10. Do one of the following.
(a) In each case describe the ring obtained from $\mathbb{Z}$ by adjoining an element $\alpha$ satisfying the given relation.
i. $\alpha^{2}+\alpha+1=0$
ii. $\alpha^{2}+1=0$
(b) Let $R=\mathbb{Z} /(10)$. Determine the structure of the ring $R^{\prime}$ obtained from $R$ by adjoining element $\alpha$ satisfying each relation.
i. $2 \alpha-6=0$
ii. $2 \alpha-5=0$.
11. Describe the ring obtained from $\mathbb{Z} / 12 \mathbb{Z}$ by adjoining an inverse of 2 .In particular, what 'standard' ring is isomorphic to this adjunction ring?
12. Let $a$ be an element of a ring $R$, and let $R^{\prime}=R[x] /(a x-1)$ be the ring obtained by adjoining an inverse of $a$ to $R$. Prove that the kernel of the canonical map from $R$ to $R^{\prime}$ is the set of elements $b \in R$ such that $a^{n} b=0$ for some $n>0$.
13. Let $F$ be a field, $t$ a free symbol and $R=F[t]$ the ring of polynomials on the variable $t$ with coefficients in $F$. Adjoin an inverse to the variable $t$ by forming the quotient $F[t, x] /(x t-1)$. Show that this ring is isomorphic to the ring $F\left[t, t^{-1}\right]$ of Laurent polynomials. A Laurent polynomial is a polynomial in $t$ and $t^{-1}$ of the form

$$
f(t)=\sum_{i=-n}^{n} a_{i} t^{i}=a_{-n} t^{-n}+\cdots a_{-1} t^{-1}+a_{0}+a_{1} t+\cdots+a_{n} t^{n}
$$

