Spring 2014

Due March 7: Problem Sheets 1, 2, 3

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page**.

"all ignorance toboggans into know and trudges up to ignorance again." - e.e.cummings, 1959

Problems

1. You Must do this problem.

Let I, J be ideals of a ring R.

- (a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J = \{r \in R : r = x + y, x \in I, y \in J\}$ is an ideal. This ideal is called the **sum** of I and J.
- (b) Prove that $I \cap J$ is an ideal.
- (c) Show by example that the set of products $\{xy : x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i,j} x_i y_j$ of products of elements of I and J is an ideal. This ideal is called the **product** ideal and is denoted IJ.
- (d) Prove $IJ \subset I \cap J$.
- (e) Show by example that IJ and $I \cap J$ need not be equal.
- 2. Do both of the following
 - (a) For which integers n does $x^2 + x + 1$ divide $x^4 + 3x^3 + x^2 + 6x + 10$ in $(\mathbb{Z}/n\mathbb{Z})[x]$?
 - (b) Describe the kernel of the map defined by $\phi : \mathbb{Z}[x] \to \mathbb{R}$ given by $\phi(f(x)) = f(1 + \sqrt{2})$.
- 3. Do both of the following
 - (a) Prove the kernel of the homomorphism $\phi : \mathbb{C}[x, y] \to \mathbb{C}[t]$ given by $\phi(f(x, y)) = f(t^2, t^3)$ is the principal ideal generated by the polynomial $y^2 x^3$.
 - (b) Describe the image of ϕ explicitly.
- 4. Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.
- 5. Let R be a commutative ring with identity of characteristic p where p is a prime. Prove that if a is nilpotent in R then 1 + a is unipotent, that is, some power of 1 + a is equal to 1. [An element in a ring is **nilpotent** if some positive integer power of the element equals 0.]
- 6. Do **one** of the following.
 - (a) Determine the structure of the ring $\mathbb{Z}[x] / (x^2 + 3, p)$ where
 - i. p = 3ii. p = 5
 - (b) Describe the ring $\mathbb{Z}[i] / (2+i)$ in terms of "more familiar" rings.
- 7. Describe the ring obtained from \mathbb{Z} by adjoining an element α satisfying the two relations $2\alpha 6 = 0$ and $\alpha - 10 = 0$.

- 8. Suppose we adjoin an element α to \mathbb{R} satisfying the relation $\alpha^2 = 1$. Prove the resulting ring is isomorphic to the product ring $\mathbb{R} \times \mathbb{R}$, and find the element of $\mathbb{R} \times \mathbb{R}$ which corresponds to α .
- 9. Let α denote the residue of x in the ring $R' = \mathbb{Z}[x] / (x^4 + x^3 + x^2 + x + 1)$. Compute the expressions for $(\alpha^3 + \alpha^2 + \alpha) (\alpha + 1)$ and α^5 in terms of the basis $(1, \alpha, \alpha^2, \alpha^3, \alpha^4)$.
- 10. Do **one** of the following.
 - (a) In each case describe the ring obtained from \mathbb{Z} by adjoining an element α satisfying the given relation.

i. $\alpha^2 + \alpha + 1 = 0$

ii. $\alpha^2 + 1 = 0$

(b) Let $R = \mathbb{Z}/(10)$. Determine the structure of the ring R' obtained from R by adjoining element α satisfying each relation.

i. $2\alpha - 6 = 0$

ii.
$$2\alpha - 5 = 0$$

- 11. Describe the ring obtained from $\mathbb{Z}/12\mathbb{Z}$ by adjoining an inverse of 2.In particular, what 'standard' ring is isomorphic to this adjunction ring?
- 12. Let a be an element of a ring R, and let R' = R[x] / (ax 1) be the ring obtained by adjoining an inverse of a to R. Prove that the kernel of the canonical map from R to R' is the set of elements $b \in R$ such that $a^n b = 0$ for some n > 0.
- 13. Let F be a field, t a free symbol and R = F[t] the ring of polynomials on the variable t with coefficients in F. Adjoin an inverse to the variable t by forming the quotient F[t, x] / (xt 1). Show that this ring is isomorphic to the ring $F[t, t^{-1}]$ of Laurent polynomials. A Laurent polynomial is a polynomial in t and t^{-1} of the form

$$f(t) = \sum_{i=-n}^{n} a_i t^i = a_{-n} t^{-n} + \dots + a_{-1} t^{-1} + a_0 + a_1 t + \dots + a_n t^n.$$