Due May 4

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Drawing on my fine command of the English language, I said nothing." - Robert Benchley

Problems

Some of these problems might be duplicates of previous sheets. You may not have credit for the same problem twice.

1. Let a, b be elements of a field F with $a \neq 0$. Prove a polynomial $f(x) \in F[x]$ is irreducible if and only if $f(a x+b)$ is irreducible.
2. Prove the kernel of the evaluation homomorphism $\phi: \mathbf{Z}[x] \rightarrow \mathbf{R}$ with $\phi(f(x))=f(1+\sqrt{2})$ is a principal ideal and find a generator for this ideal.
3. Prove the following polynomials are irreducible in $\mathbf{Q}[x]$

- $x^{2}+27 x+213,8 x^{3}-6 x+1, x^{5}-3 x^{4}+3$

4. Factor $x^{5}+5 x+5$ into irreducible factors in $\mathbf{Q}[x]$ and in $(\mathbf{Z} / 2 \mathbf{Z})[x]$.
5. Using reduction modulo 2 as an aid, factor the following polynomials in $\mathbf{Q}[x]$
(a) $x^{2}+2345 x+125$
(b) $x^{4}+2 x^{3}+2 x^{2}+2 x+2$
(c) $x^{4}+2 x^{3}+3 x^{2}+2 x+2$
(d) $x^{5}+x^{4}-4 x^{3}+2 x^{2}+4 x+1$
6. Factor the following into primes in $\mathbf{Z}[i]$.

- $30,1-3 i, 10,6+9 i$

7. Prove that a polynomial with integer coefficients is primitive if and only if it is not contained in any of the kernels of the substitution homormorphisms $h_{p}: \mathbf{Z}[x] \longrightarrow \mathbf{Z} / p \mathbf{Z}[x]$ that takes $f(x)=\sum a_{n} x^{n}$ to the polynomial $\sum \bar{a}_{n} x^{n}$ where p is a prime integer and \bar{a} denotes the equivalence class of a in $\mathbf{Z} / p \mathbf{Z}$.
8. Prove that two integer polynomials are relatively prime in $\mathbf{Q}[x]$ if and only if the ideal they generate in $\mathbf{Z}[x]$ contains an integer.
9. Prove that det $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ is irreducible in the polynomial $\operatorname{ring} \mathbf{C}[x, y, z, w]$.
