Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Experience is what enables you to recognize a mistake when you make it again."(Earl Wilson)

Problems

1. Given a ring R, the set of formal power series $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+$ ('formal' means there is no requirement of convergence) is a ring. (This set is denoted $R[[t]]$.) Show that $R[[t]]$ is a ring under the standard addition and multiplication of power series and prove that a formal power series $p(t)$ is invertible in $R[[t]]$ if and only if a_{0} is a unit of R.
2. Let \mathbb{Q} denote the rational numbers (you may use the fact that \mathbb{Q} is a field), $\mathbb{Q}[\alpha]$ the smallest subring of C (the complex numbers) containing \mathbb{Q} and α, and $\mathbb{Q}[\alpha, \beta]$ the smallest subring of C containing \mathbb{Q} and both α and β. Let $\alpha=\sqrt{2}, \beta=\sqrt{3}$ and $\gamma=\alpha+\beta$. Prove that $\mathbb{Q}[\alpha, \beta]=\mathbb{Q}[\gamma]$.
3. (Judson: Chapter 16, \#6) Find all the ring homomorphisms $\phi: \mathbf{Z} / 6 \mathbf{Z} \rightarrow \mathbf{Z} / 15 \mathbf{Z}$.
4. Do both of the following:
(a) Judson: Chapter 16, \#36 (c),(d). You may assume parts (a) and (b) are true.
(b) Let I and J be subrings of a ring R and define $I+J=\{a+b: a \in I$ and $b \in J\}$.
i. Prove that $I+J$ need not be a subring of R.
ii. Prove that if one of I and J, say J, is an ideal, then $I+J$ is a subring of R. (Hence the Second Isomorphism Theorem for Rings in Judson [Theorem 16.13] now makes sense.)
