Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Tuesday, February 18.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"It is by logic that we prove but by intuition that we discover." (Henri Poincaré)

SLE-2 (Use only material up to and including Section HSE)

Let A be an $m \times n$ matrix, and \vec{b} a constant vector for which the system of equations $L S(A, \vec{b})$ is consistent and has solution set S. Pick one vector in S and denote it by $\vec{\beta}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right]$. Let T be the set of all vectors obtained by adding the components of $\vec{\beta}$ to the corresponding components of each of the vectors in $N(A)$, the null space of A. More specifically, $T=\left\{\left.\left[\begin{array}{c}a_{1}+\beta_{1} \\ a_{2}+\beta_{2} \\ \vdots \\ a_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n} \right\rvert\,\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \in N(A)\right\}$. Prove that the sets S and T are equal.

For all $m \times n$ matrices A and all vectors $\vec{b} \in \mathbb{C}^{m}$ for which the system of equations $L S(A, \vec{b})$ is consistent with solution set S.
For all $\vec{\beta}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right] \in \mathbb{C}^{n}$,
prove, if $T=\left\{\left.\left[\begin{array}{c}a_{1}+\beta_{1} \\ a_{2}+\beta_{2} \\ \vdots \\ a_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n} \right\rvert\,\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \in N(A)\right\}$, then $S=T$.

For all $m \times n$ matrices A and all vectors $\vec{b} \in \mathbb{C}^{m}$ for which the system of equations $L S(A, \vec{b})$ is consistent with solution set S.
For all $\vec{\beta}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right] \in \mathbb{C}^{n}$,
prove, if $T=\left\{\left.\left[\begin{array}{c}a_{1}+\beta_{1} \\ a_{2}+\beta_{2} \\ \vdots \\ a_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n} \right\rvert\,\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \in N(A)\right\}$, then $S=T$.

For all $m \times n$ matrices A and all vectors $\vec{b} \in \mathbb{C}^{m}$ for which the system of equations $L S(A, \vec{b})$ is consistent with solution set S.
For all $\vec{\beta}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right] \in \mathbb{C}^{n}$,
prove, if $T=\left\{\left.\left[\begin{array}{c}a_{1}+\beta_{1} \\ a_{2}+\beta_{2} \\ \vdots \\ a_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n} \right\rvert\,\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \in N(A)\right\}$, then $S=T$.

