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Introduction

In 1996 the Nobel Prize in Chemistry was awarded to Curl, Kroto and Smalley for their
discovery of buckminsterfullerene, named after the geodesic domes of architect Buckminster
Fuller. These molecules, denoted C60 or simply “buckyballs”, were the first new allotropes of
carbon to be discovered since graphite and diamond. Since its discovery, research into fullerenes
has generated an enormous number of new structures such as carbon nanotubes, now used in
diverse applications.

Although the chemical composition, C60, was known at the time of discovery on the basis
of mass spectrometry, the molecular structure remained unknown. Graphite sheets, from which
the new compound was formed by laser ablation, should be highly unstable due to the number
of dangling bonds with unpaired electrons at the edge. And yet, the new compound was highly
stable, suggesting strong molecular symmetry. It follows from Euler’s formula for a convex
polyhedron,

V − E + F = 2

where V , E and F are the number of vertices, edges and faces, that for a convex polyhedron
comprised of pentagonal and hexagon pieces, both chemically stable shapes, the structure must
have 12 pentagons and V/2− 10 hexagons. In the case of C60, this results in 12 pentagons and
20 hexagons, or the shape of a soccerball as seen in Figure 1.

Figure 1. Two structural representations of the fullerene C60. Source: [Housecroft and
Sharpe, 2008]

Experimental confirmation of this structure requires testable predictions and it is here that
the mathematical theory of groups makes an appearance. The structure shown in Figure 1
belongs to the truncated icosahedron symmetry group or Ih. By applying tools from represen-
tation theory, researchers were able to predict the number of spectral lines for various possible
structures. After obtaining an experimental spectrum only the structure in Figure 1 was a
match.

This paper will develop the mathematical ideas necessary to understand what was done in
the buckyball experiment. Due to the large number of symmetry elements in the Ih group we
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will instead work with a simple water molecule, or H2O. A full treatment of the buckyball can
be found in [Sternberg, 1994] pages 126–129.

Symmetry Elements and Operations

When considering molecular symmetry, only four categories of symmetry elements and op-
erations need be examined. These categories are presented in Table 1.

Table 1. The four kinds of symmetry elements and operations required to specify molecular
symmetry. Source: [Cotton, 1990]

Symmetry Element Symmetry Operation

Plane Reflection in the plane

Inversion center Inversion of all atoms through the center

Proper axis One or more rotations about the axis

Improper axis One or more repetitions of the sequence:
rotation followed by reflection in a plane
perpendicular to the rotation axis

We will restrict ourselves to a superficial treatment of molecular symmetry classification; a
full treatment can be found in any inorganic chemistry textbook. Our ongoing example will be
the water molecule, H2O, shown in Figure 2 along with its symmetry elements.

Figure 2. The H2O molecule possesses one C2 axis and two mirror planes. (a) The C2

axis and mirror plane containing the H2O molecule. (b) The C2 axis and mirror plane
perpendicular to the plane of the molecule. (c) Combination view of all symmetry elements
in the H2O molecule. Source: [Housecroft and Sharpe, 2008]
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Proper Axes and Proper Rotations

If rotation of the molecule about an axis passing through the center of the molecule produces
an indistinguishable configuration the molecule is said to have a proper rotation axis. The
symmetry operation involves rotation about an n-fold axis, denoted by the symbol Cn, in which
the angle of rotation is 360◦/n for n a positive integer. In H2O, Figure 2, we find a single
2-fold proper rotation axis C2 where rotation by 360◦/2 = 180◦ switches the position of the two
hydrogen atoms. As this is the axis of highest n, we call it the principal axis and consider it the
z or vertical axis.

Symmetry Planes and Reflections

If reflection of all parts of a molecule through a plane produces an indistinguishable configu-
ration, then the plane is a plane of symmetry ; the symmetry operation is reflection through the
plane and the symmetry element is the mirror plane, denoted σ. The water molecule contains
two mirror planes, one in the plane of the molecule and one perpendicular to it. As both planes
contain the principal (or vertical) axis we denote them as σv and σ′v.

Inversion Center

If reflection of all parts of the molecule through the center of the molecule results in an
indistinguishable configuration the molecule is said to have an inversion center, denoted i.
Water has no such symmetry element but the buckyball, Figure 1, does.

Improper Axes and Improper Rotations

If rotation of the molecule about an axis passing through the center followed by reflection
through a plane perpendicular to that axis produces an indistinguishable configuration the
molecule is said to have an improper rotation axis, denoted by the symbol Sn. This can be
difficult to spot and again does not appear in water but is present in the buckyball in the form
of an S10 symmetry element.

Point Groups

Once all symmetry elements have been identified, the corresponding point group, or math-
ematical group of symmetries, can be identified. With symmetry operations considered as
functions the group operation is function composition. Although we have not explicitly listed
it above, every molecule has a corresponding identity symmetry operation, or E, which fixes all
points.

All of the three dimensional point groups are subgroups of the previously encountered1

orthogonal group O(3). Recall that O(3) is a subgroup of GL3(R) consisting of the set of
orthogonal, 3 × 3 matrices, or those matrices satisfying A−1 = At. Geometrically, these are
matrices which preserve the length of vectors.

We will not dwell on identification of point groups since the process follows a trivial but
tedious process as shown in Appendix A, Figure 6. For our example, H2O, we note from

1The definition and properties of O(n) are explored in [Judson, 2013] pages 167–173.
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Figure 2 that the symmetry elements are E, C2, σv, σ
′
v. Following the flowchart in Figure 6 we

find that the corresponding point group is C2v.

Representations

A representation of the type of groups we shall concern ourselves with is a set of matrices in
one-to-one correspondence with the elements of the group such that the result of any combination
of group elements parallels the corresponding matrix operations. Thus, if three group elements
γ1, γ2, γ3 in a group G are related such that γ1γ2 = γ3, and the corresponding matrix for a group
element γi is gi, then g1g2 = g3.

Recall that GLn(F), or the general linear group, is the set of invertible n× n matrices with
entries in F. Given a vector space V there is a similar group GL(V ) or Aut(V ) defined as the
group of all automorphisms of V , i.e. the set of all bijective linear transformations V → V , with
function composition as the group operation. If V has finite dimension n, which for our purposes
will always be true, then GLn(F) is isomorphic to GL(V ) and the group GL(V ) becomes the
group of invertible n× n matrices.

Let G be a finite group with identity 1 and group operation (s, t) 7→ st. A linear represen-
tation of G in V is a homomorphism ρ from the group G into the group GL(V ). Since group
homomorphisms must respect the group operation, for any elements s, t ∈ G,

ρ(st) = ρ(s)ρ(t).

If follows that
ρ(1) = 1 and ρ(s−1) = ρ(s)−1.

We will sometimes write ρ(s) as ρs.
Suppose that V has finite dimension n; we say that n is the degree of the constructed

representation. After choosing a basis for V let Rs be the matrix of ρs with respect to this basis.
We have

det(Rs) 6= 0 and Rst = RsRt ∀s, t ∈ G.

Conversely, given invertible matrices satisfying the preceeding identities, there exists a corre-
sponding linear representation ρ of G in V . This is what it means to give a representation “in
matrix form”.

As an example, let us work out an explicit representation for C2v, the point group of our
example water molecule. We have already established that this group consists of the four
elements E, C2, σv, and σ′v. The tradition is to set the z-axis of our Cartesian coordinate
system along the principal axis, C2 in this case. Additionally, let σv be the xz plane and σ′v be
the yz plane. Then the matrices representing the effects of each symmetry operation on a given
point are as follows:
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E :

1 0 0

0 1 0

0 0 1

 C2 :

−1 0 0

0 −1 0

0 0 1



σv(xz) :

1 0 0

0 −1 0

0 0 1

 σ′v(yz) :

−1 0 0

0 1 0

0 0 1


The Cayley table for the C2v group follows as Table 2 and it can be easily shown that the

matrices constructed above multiply together in a fashion which respects the composition of
symmetry operations detailed below.

Table 2. Cayley table for the group C2v.

E C2 σv σ′v

E E C2 σv σ′v
C2 C2 E σ′v σv

σv σv σ′v E C2

σ′v σ′v σv C2 E

This naturally leads us to wonder if the above representation is unique. Consider that if we
assigned three small unit vectors directed along the x, y, and z axes to each of the atoms in
H2O and wrote down the corresponding matrices for each symmetry operation we would have
a set of four 9× 9 matrices constituting the representation of the group. We could construct a
third representation by considering the minimum amount of information necessary to completely
describe our representation. It appears that assigning 1 or −1 to to each operation as shown in
Table 3, where the operation is component-wise multiplication, both satisfies the Cayley table

Table 3. Alternate representation of C2v.

E C2 σv σ′v

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

and is minimal relative to the 3×3 and 9×9 representations. Clearly then our representation is
not unique and the number of representations is limited only by our imagination. This motivates
the following definition.

Let ρ and ρ′ be two representations of the same group G in vector spaces V and V ′. These
representations are said to be similar (or isomorphic) if there exists a linear isomorphism τ :
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V → V ′ which satisfies the identity

ρ′s = τ ◦ ρs ◦ τ−1 ∀s ∈ G.

When ρ and ρ′ are given in matrix form by Rs and R′s respectively, this definition is equivalent
to saying there exists an invertible matrix T such that

R′s = TRsT
−1 ∀s ∈ G.

Recall that this is precisely the definition of matrix similarity in linear algebra, corresponding
to the idea that similar matrices represent the same linear operator under two different bases,
with T being the change of basis matrix. This defines an equivalence relation which partitions
the set of representations of a group G into conjugacy classes.

For any group, only a limited number of representations are of fundamental significance.
Recall from linear algebra that, given two subspaces U and W of a vector space V , we say that
V is a direct sum of U and W , written V = U ⊕W , if V = U +W and U ∩W = ∅.

Let ρ : G → GL(V ) be a linear representation of G. We say ρ is irreducible if V is not the
direct sum of two representations (except for the trivial decomposition V = 0⊕ V ). If ρ is not
irreducible then we say it is reducible.

Since we concern ourselves only with finite groups over the complex numbers, a reducible
representation will always decompose into the direct sum of irreducible representations.2 Hence,
a representation of degree 1 is always irreducible.

We can ask if this decomposition is unique, or if two irreducible representations can be in
the same conjugacy class. Although the answer may not be immediately obvious, [Serre, 1977]
points out that, in the trivial case where all the ρs are equal to 1, which we have already seen
in the top line of Table 3, the vector subspaces of V are all lines and we have a multitude of
decompositions of a vector space into a direct sum of lines.

Character

Since even irreducible representations are not invariant under similarity transformations, it
would be useful to have a classification for representations which is invariant in this manner.
Since we can always express a representation in matrix form, and since the trace of a matrix,
given as the sum of its diagonal elements, is invariant under similarity tranformations, we are
motivated to the following definition.

Let ρ : G→ GL(V ) be a representation of a finite group G in the vector space V . For each
s ∈ G let

χρ(s) = Tr(ρs).

The complex valued function χρ on G is called the character of the representation ρ.

Theorem 1. If χ is the character of a representation ρ of degree n, then the following properties
are derived from the properties of the trace:

(i) χ(1) = n

2Maschkeś theorem provides a more complete description for determining when a representation is completely
reducible. http://en.wikipedia.org/wiki/Maschke%27s_theorem.

http://en.wikipedia.org/wiki/Maschke%27s_theorem
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(ii) χ(s−1) = χ(s)∗ ∀s, t ∈ G
(iii) χ(tst−1) = χ(s) ∀s, t ∈ G

We see that character is a function which is constant on conjugacy classes; if two represen-
tations are similar, they will have identical character. Thus the set of irreducible characters,
corresponding to the irreducible representations, allows us to fully classify an arbitrary repre-
sentation.

Results

The Great Orthogonality Theorem

The important properties of representations and their character can be derived from one
important theorem concerning the elements of the matrix form for the irreducible representations
of the group.

Theorem 2 (The Great Orthogonality Theorem). For a group G of order h let the dimension
of the ith representation be denoted li. Denote the various operations in the group by R and
the element in the mth row and nth column of the matrix corresponding to the operation R in
the ith irreducible representation by Γi(R)mn. Then,∑

R

[Γi(R)mn][Γj(R)m′n′ ]∗ =
h√
lilj

δijδmm′δnn′ .

We will not prove this theorem as it is a non-trivial proof; the full proof can be found in
[Eyring et al., 1944] page 371. However, we can interpret the theorem as meaning that, in the
set of matrices comprising any single irreducible representation, any set of corresponding matrix
elements, one from each matrix, behaves as the components of a vector in h-dimensional space
such that all these vectors are mutually orthogonal and each is normalized so the square of its
length is h/li.

Four Important Rules

In our application of representation theory to chemistry the following four theorems are of
prime importance.

Theorem 3. The sum of the squares of the dimensions of the irreducible representations of a
group is equal to the order of the group, that is,∑

l2i = h.

Proof. [Cotton, 1990] A complete proof is quite lengthy3 and will not be given; instead we will
give the spirit of the proof by showing that

∑
l2i ≤ h.

In a square matrix of order l there are l2 elements. Thus each irreducible representation Γi
will provide l2i h-dimensional vectors (recall the four 3× 3 and four 9× 9 matrix representations
previously mentioned for C2v). By Theorem 2 these vectors must be orthogonal. Since there
can be no more than h orthogonal h-dimensional vectors, the sum

∑
l2i must not exceed h.
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Theorem 4. The sum of the squares of the characters in any irreducible representation is equal
to the order of the group, that is, ∑

R

[χi(R)]2 = h.

Proof. [Serre, 1977] From Theorem 2 we may write∑
R

Γi(R)mmΓi(R)m′m′ =
h

li
δmm′ .

Summing the left side over m and m′, we obtain

∑
m′

∑
m

∑
R

Γi(R)mmΓi(R)m′m′ =
∑
R

[∑
m

Γi(R)mm
∑
m′

Γi(R)m′m′

]
=

∑
R

χi(R)χi(R)

=
∑
R

[χi(R)]2

while summing the right side over m and m′, we obtain

h

li

∑
m′

∑
m

δmm′ =
h

li
li = h.

thus proving the desired equality.

Theorem 5. The vectors whose components are the characters of two irreducible representations
are orthogonal, that is, ∑

R

χi(R)χj(R) = 0 when i 6= j.

Proof. [Cotton, 1990] From Theorem 2, setting m = n, we know∑
R

Γi(R)mmΓj(R)mm = 0.

Using this result in the following chain of equalities we see that

∑
R

χi(R)χj(R) =
∑
R

[∑
m

Γi(R)mmΓj(R)mm

]

=
∑
m

[∑
R

Γi(R)mmΓj(R)mm

]
= 0.

3A complete proof can be found in [Serre, 1977], page 18 but requires tracking through a number of other
theorems which we have not proven.
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Theorem 6. The number of irreducible representations of a group is equal to the number of
equivalence classes in the group.

Proof. [Cotton, 1990] As for Theorem 3, a complete proof will not be given. We can, how-
ever, easily prove that the number of equivalence classes sets an upper limit on the number of
irreducible representations. We can combine Theorem 4 and Theorem 5 to state that∑

R

χi(R)χj(R) = hδij .

If we now denote the number of elements in the pth equivalence class by gp, and if there are k
classes altogether, we can restate this as

k∑
p=1

χi(Rp)χj(Rp)gp = hδij .

where Rp refers to any one of the operations in the pth class. This implies that the k quantities
χl(Rp), in each representation Γl behave like the components of a k-dimensional vector and that
these k vectors are mutually orthogonal. Since only k k-dimensional vectors can be mutually
orthogonal, there can be no more than k irreducible representations in a group which has k
classes.

Application

Let us now consider the irreducible representations of our example group, C2v, to see how
these four theorems apply. We already know each of the four elements in C2v are in a separate
class. Hence, by Theorem 6, there are four irreducible representations for this group. But, by
Theorem 3, the sum of the squares of the dimensions of these representations equals h. Thus
we seek a set of four positive integers li satisfying

l21 + l22 + l23 + l24 = 4.

Clearly the only solution is
l1 = l2 = l3 = l4 = 1.

Thus the group C2v has four one-dimensional irreducible representations.
We can work out the character for each of these irreducible representations based on their

vector properties and our theorems. One suitable vector in 4-space with a component of 1
corresponding to E will obviously be

E C2 σv σ′v

Γ1 1 1 1 1

since ∑
R

[χ1(R)]2 = 4
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thereby satifying Theorem 4. All the other representations must also satisfy Theorem 4. Thus,∑
R

[χi(R)]2 = 4

which can only be true if χi(R) = ±1. Since all four irreducible representations must also be
orthogonal in order to satisfy Theorem 5, we find that two elements of each representation must
be +1 and two must be −1. Therefore the full set of irreducible representations for C2v is

E C2 σv σ′v

Γ1 1 1 1 1

Γ2 1 1 -1 -1

Γ3 1 -1 1 -1

Γ4 1 -1 -1 1

This result is quite similar to Table 3 which we constructed by considering the minimal
amount of information necessary to completely represent the underlying group; how interesting.

Character Tables

Most applications of group theory to molecular symmetry will involve the use of character
tables. A sample character table4 for the group C2v can be seen in Table 4, represented exactly
as it would appear in a reference text.

Table 4. Character table for the group C2v.

E C2 σv(xz) σ′v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy

B1 1 -1 1 -1 x, Ry xz

B2 1 -1 -1 1 y, Rx yz

I II III IV

Area I

Until now we have designated representations with the notation Γi. Virtually all books and
papers use Mulliken symbols,5 as shown in Table 4.

4A complete set of character tables for the symmetry groups relevant to real molecules can be found at
http://www.webqc.org/symmetry.php.

5A summary of Mulliken symbols may be found at http://mathworld.wolfram.com/MullikenSymbols.html.

http://www.webqc.org/symmetry.php
http://mathworld.wolfram.com/MullikenSymbols.html
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Area II

Here are the characters of the irreducible representations of the group. These were developed
in detail in the previous section and require no additional comment.

Area III

This area consists of the symbols corresponding to the coordinates x, y, and z, as well as
the rotations with subscript indicating the corresponding axis. For the group C2v recall the
previously developed matrix forms, reproduced below.

E :

1 0 0

0 1 0

0 0 1

 C2 :

−1 0 0

0 −1 0

0 0 1



σv(xz) :

1 0 0

0 −1 0

0 0 1

 σ′v(yz) :

−1 0 0

0 1 0

0 0 1


Consider the action of each on the vector vT =

[
1 0 0

]
, corresponding to the x axis. We find

that

Ev = v,

C2v = −v,
σv(xz)v = v, and

σ′v(yz)v = −v.

Thus, we assign the x coordinate to the B1 representation. A similar process holds for assignment
of the y and z axes.

The transformation properties of rotations can be more complex, but a full treatment is un-
necessary for C2v. We proceed geometrically, visualizing a curved arrow about an axis standing
for rotation. Given such an arrow around the x axis, we find it is unchanged by E and σ′v(yz)
but the direction of the arrow is reversed by C2 and σv(xz). Thus we assign the Rx rotation to
the B2 representation. A similar process holds for assignment of the Ry and Rz rotations.

Note that is it possible, both in this section and the next, that certain terms will fail to
correspond to any irreducible representation. In such an event, they will not appear in the
character table.

Area IV

In this part of the table are listed the quadratic coordinate terms. Assignment of these terms
to the correct representation follows the same process as the linear terms in III except that the
amount of algebra generally increases. However, that is not always the case. For example, since
z goes into itself under all symmetry operations, so does z2, with corresponding assignment
to the A1 representation. From the Cayley table, shown in Table 2, we see that every group
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element is its own inverse. Thus the x2 and y2 functions are also unchanged and correspond to
the A1 representation.

Vibrational Spectroscopy

The motion of a molecule containing n atoms can be conveniently described in terms of
the Cartesian axes; the molecule has 3n degrees of freedom which collectively describe the
translational, rotational, and vibrational motions of the molecule. As the molecule must have
three degrees of translational and three degrees of rotational freedom, the number of vibrational
degrees of freedom must be 3n − 6. In the case of water we find three vibrational degrees of
freedom.

Since water is such a simple molecule we can immediately visualize the three vibrational
modes, shown in Figure 3. In more complicated molecules this is rarely the case; one must

Figure 3. The vibrational modes of H2O. Source: [Housecroft and Sharpe, 2008]

proceed via purely group theoretic means. For example, consider only the stretching of O–H
bonds in the water molecule, without respect to direction, under the symmetry operations of
C2v. Ask the question: how many bonds are left unchanged under each operation? The E and
σ′v operations leave two bonds unchanged. However, the C2 and σv operations leave zero bonds
unchanged. Thus, stretching of the O–H bonds can be expressed as the representation

E C2 σv σ′v

ΓR 2 0 0 2

which, since it does not match any of the irreducible representations of C2v, must decompose
into a direct sum of irreducible representations. We can row reduce to find these irreducible
representations. 

1 1 1 1 2

1 1 −1 −1 0

1 −1 1 −1 0

1 −1 −1 1 2

 RREF−−−−→


1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1


This tells us that there are two non-degenerate (orthogonal) stretching modes, one of A1 sym-
metry and one of B2 symmetry. This identifies the symmetric and asymmetric stretch shown in
Figure 3, (a) and (b). To identify each mode with its corresponding irreducible representation,
again consider the effect of each symmetry operation on the stretch of O–H bonds, but this time
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consider with respect to direction (indicated by arrows in Figure 3). We see that the symmetric
stretch is left unchanged by all four symmetry operations, or

E C2 σv σ′v

Γ 1 1 1 1

which, after inspection of the character table, indicates that Γ = A1. A similar procedure for
the asymmetric stretch indicates correspondence with the B2 irreducible representation.

Since water has a total of (3n−6) = 3 vibrational degrees of freedom, there is one vibrational
mode left, corresponding to the scissoring in Figure 3 (c). This mode can be assigned by
considering the H–O–H bond angle and repeating the same process used for the other two
modes. The result is a correspondence with the irreducible representation A1.

Having assigned all vibrational modes we can now use the character table to determine which
modes are active under IR spectroscopy. Without proof6 we note the following rule:

A vibrational mode will be infrared active (i.e., will result in an absorption band) if the
corresponding representation corresponds to one or more of the linear coordinate terms in
the character table.

Since all three vibrational modes of the water molecule correspond to representations with
either z or y linear terms, we see that all three should have IR absorption bands. These are
illustrated in the gaseous IR spectrum (neglecting rotational fine structure) of water, shown in
Figure 4.

Figure 4. Calculated IR spectrum of gaseous H2O showing the three fundamental absorb-
tions. Source: [Housecroft and Sharpe, 2008]

6A full development of the selection rules which determine if an electronic transition is allowable requires a
quantum mechanical treatment beyond the scope of this document. It is based on determining the symmetry
of the transition moment function. If this symmetry spans a totally symmetric representation of the molecule’s
point group then the transition is allowed. A full treatment can be found in [Sternberg, 1994] §3.6 or [Cotton,
1990] §10.6.
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Returning in spirit to our opening example of the buckyball, what if we didn’t already know
the structure of water and wanted to determine if it was bent or linear? We have already
predicted that a bent structure will have three IR spectral absorption lines. If instead water
was linear it would belong to the point group D∞h by Appendix A, Figure 6. Although this is
an infinite group (since an infinitesimal rotation leaves a linear molecule unchanged) it is one
of the few infinite groups which behaves as expected under the mathematical mechanisms we
have built. Performing a similar analysis as under the bent case, we find four normal modes
of vibration, shown in Figure 5. Of these four, we would find that the symmetric stretch is

Figure 5. The vibrational modes of a linear molecule. Vibrations (a) and (b) are stretch-
ing modes. Bending mode (c) occurs in the plane of the paper, while (d) occurs in a
plane perpendicular to that of the paper; the + signs designate motion towards the reader.
The two bending modes require the same amount of energy and are therefore degenerate.
Source: [Housecroft and Sharpe, 2008]

IR inactive since it does not correspond to an irreducible representation with linear coordinate
transformation term. Although the remaining three normal modes are IR active, we would
find that the two bending modes are degenerate. Thus a linear molecule would have two IR
absorption peaks, allowing easy experimental determination of the structural configuration of
water via the power of symmetry and representation theory.
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Appendix A – Determination of Point Groups

Figure 6. Scheme for assigning point groups of molecules. Source: [Housecroft and Sharpe,
2008]
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Appendix B – Exercises

Problem 1. Prove that a finite group G is abelian if and only if all the irreducible representa-
tions of G have degree 1.

Problem 2. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two linear representations of G,
and let χ1 and χ2 be their characters. Show that the character of the direct sum representation
V1 ⊕ V2 is equal to χ1 + χ2.



Representation Theory 18

Bibliography

Housecroft, C.; Sharpe, A. Inorganic Chemistry, 3rd ed.; Pearson Education: England, 2008.

Sternberg, S. Group Theory and Physics, 1st ed.; Cambridge University Press: Cambridge,
Great Britain, 1994.

Cotton, F. A. Chemical Applications of Group Theory, 3rd ed.; Wiley-Interscience: New
York, 1990.

Judson, T. Abstract Algebra; Orthogonal Publishing: Ann Arbor, Michigan, 2013.

Serre, J. Linear Representations of Finite Groups, 1st ed.; Springer-Verlag: New York,
1977.

Eyring, H.; Walter, J.; Kimball, G. E. Quantum Chemistry; John Wiley and Sons: New
York, 1944.


	Introduction
	Symmetry Elements and Operations
	Proper Axes and Proper Rotations
	Symmetry Planes and Reflections
	Inversion Center
	Improper Axes and Improper Rotations
	Point Groups

	Representations
	Character
	Results
	The Great Orthogonality Theorem
	Four Important Rules
	Application

	Character Tables
	Vibrational Spectroscopy
	Appendix A – Determination of Point Groups
	Appendix B – Exercises
	Bibliography

