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M-2 (Section FS)
Definition: If A is a square matrix of size m then we define A0 = Im, A1 = A, and An+1 = AnA for each
n ≥ 1. Further, if A is invertible, we define A−n =

(
A−1

)n
1. Suppose A and B are square matrices of size m and that A is non-singular. Use the principle of

mathematical induction to prove that
(
A−1BA

)n
= A−1BnA for every positive integer n.

2. Now suppose that B is also nonsingular and extend the previous result by proving the formula(
A−1BA

)n
= A−1BnA holds for every integer (positive, negative and zero).

3. Use your formula and the matrices B =

[
1
2

3
4

1
2

1
4

]
and A =

[
3 1
2 −1

]
and the vector ~x0 =

[
50
0

]
to compute Bn~x0. What is the component by component limit of Bn~x0 as n→∞?

Notes:

• In part 3, A−1BA should simplify to be a diagonal matrix.

• Recall the formula for powers of diagonal matrices (proven in class) and use it to compute Bn.
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