Project V-2

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Tuesday, March 12
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"'Know thyself?' If I knew myself, I'd run away." - Johann von Goethe
V-2 (Section O) Prove both of the following Theorems.
The following two results (especially the first) might seem simple but they provide an excellent opportunity to learn how to correctly present a proof involving linear independence. So make sure to focus on the using correct notation to present the details.

Theorem 1 (Contract) Suppose $n \geq 2$ and that $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}\right\}$ is a linearly independent set of vectors. Then $T=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}\right\}$ is also linearly independent.

Theorem 2 (Expand) Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}\right\}$ is a linearly independent set of vectors and that $\vec{z} \notin\langle S\rangle$. Then $W=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}, \vec{z}\right\}$ is also linearly independent.
[These theorems are the keys to building larger (or smaller) linearly independent sets.]

