April 16

Name

Directions: Only write on one side of each page.

Do any (5) of the following

- 1. Using any previous results, prove Proposition 4.1 (SAA) in neutral geometry. Specifically, Given $AC \cong DF$, $\measuredangle A \cong \measuredangle D$, and $\measuredangle B \cong \measuredangle E$. Then $\triangle ABC \cong \triangle DEF$.
- 2. Using any previous results, prove the following half of Proposition 4.10.

- 3. Prove
 - (a) Every acute angle has a complementary angle.
 - (b) If the complements of two acute angles are congruent then the acute angles are congruent.
- 4. A scalene triangle is defined to be any triangle that is not isosceles. Using any results through the end of Chapter 4, prove that in any Hilbert plane there is a triangle that is scalene.
- 5. Here is a statement S_p : Given lines l, m, n. If $l \mid m$ and $m \mid n$, then $l \mid n$.

Using any results through Chapter 4, prove S_p holds if and only if Hilbert's Euclidean parallel postulate holds.

6. Using any result through the Chapter 4, prove the following.

If $\Box ABCD$ is a convex quadrilateral and l is any line other than \overleftarrow{AB} intersecting segment AB in a point between A and B, then l also intersects at least one of BC, CD, AD.

⁽If $k \parallel l, m \perp k$, and $n \perp l$, then either m = n or $m \parallel n$.) implies Hilbert's Euclidean parallel postulate.