Directions: Only write on one side of each page.

Do any (5) of the following

1. Using any previous results, prove Proposition 4.1 (SAA) in neutral geometry. Specifically, Given $A C \cong D F, \measuredangle A \cong \measuredangle D$, and $\measuredangle B \cong \measuredangle E$. Then $\triangle A B C \cong \triangle D E F$.
2. Using any previous results, prove the following half of Proposition 4.10.
(If $k \| l, m \perp k$, and $n \perp l$, then either $m=n$ or $m \| n$.) implies Hilbert's Euclidean parallel postulate.
3. Prove
(a) Every acute angle has a complementary angle.
(b) If the complements of two acute angles are congruent then the acute angles are congruent.
4. A scalene triangle is defined to be any triangle that is not isosceles. Using any results through the end of Chapter 4, prove that in any Hilbert plane there is a triangle that is scalene.
5. Here is a statement S_{p} : Given lines l, m, n.If $l \| m$ and $m \| n$, then $l \| n$.

Using any results through Chapter 4, prove S_{p} holds if and only if Hilbert's Euclidean parallel postulate holds.
6. Using any result through the Chapter 4, prove the following.

If $\square \mathbf{A} B C D$ is a convex quadrilateral and l is any line other than $\overleftrightarrow{A B}$ intersecting segment $A B$ in a point between A and B, then l also intersects at least one of $B C, C D, A D$.

