February 27, 2007

Technology used:

- Only write on one side of each page.
- Show all of your work. Calculators may be used for numerical calculations and answer checking only.
- Be sure to include in-line citations every time you use technology and Include a careful sketch of any graph obtained by technology in solving a problem.

Do any six (6) of the following problems

datory Problem (10 points each) Do any three (3) of the following 4 integral problems.
(a) Evaluate $\int 2 x \arcsin \left(x^{2}\right) d x$
(b) Use integration by parts to establish the reduction formula: $\int(\ln (x))^{n} d x=x(\ln (x))^{n}-$ $n \int(\ln (x))^{n-1} d x$
(c) Evaluate $\int 3 \sec ^{4}(3 x) d x$
(d) Evaluate $\int 8 \cos ^{3}(2 \theta) \sin (2 \theta) d \theta$

Do any four (4) of the following problems.

1. (15 points) Find the length of the curve given by the equation:

$$
x=\frac{y^{4}}{4}+\frac{1}{8 y^{2}}, \quad 1 \leq y \leq 2
$$

2. (15 points) Do one of the following
(a) Find the area of the surface generated by revolving the curve $x=y^{3} / 3,0 \leq y \leq 1$ about the y-axis.
(b) Find the area of the surface generated by revolving $x=\cos (t), y=2+\sin (t), 0 \leq x \leq 2 \pi$ about the x-axis.
3. (15 points) One model for the way diseases die out when properly treated assumes that the rate $d y / d t$ at which the number of infected people changes is proportional to the the number y. That is, the number of people cured is proportional to the number y that are infected with the disease. Starting with an initial population of 10,000 people, suppose that in any given year the number of cases can be reduced by 25%. How long will it take to eradicate the disease, that is, reduce the number of cases to less than 1 ?
4. (15 points) Solve the separable differential equation

$$
\frac{d y}{d x}=\frac{e^{2 x-y}}{e^{x+y}}
$$

5. (15 points) A thin plate of density $\delta(x)=4 / \sqrt{x}$ covers the region between the curve $1 / \sqrt{x}$ and the x-axis from $x=1$ to $x=16$. Find the x coordinate, \bar{x}, of the center of mass.
