Math 434: Problem Sheet 5

"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race." - Alfred North Whitehead

0.1 Rings part 1

1. Do both of the following.
(a) Prove all of the parts of Theorem 12.1 in Gallian.
(b) Given a ring R, the set of formal power series $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+$ ('formal' means there is no requirement of convergence) is a ring. (Denoted $R[[t]]$.) Show that $R[[t]]$ is a ring and prove that a formal power series $p(t)$ is invertible if and only if a_{0} is a unit of R.
2. Let Q denote the rational numbers (you may use the fact that Q is a field), $Q[\alpha]$ the smallest subring of C (the complex numbers) containing α, and $Q[\alpha, \beta]$ the smallest subring of C containing both α and β. Let $\alpha=\sqrt{2}, \beta=\sqrt{3}$ and $\gamma=\alpha+\beta$. Prove that $Q[\alpha, \beta]=Q[\gamma]$.
3. Prove the distributive law and the cancellation law of addition for the natural numbers. You may assume commutativity and associativity have already been proven.
