Mathematics 434

March 27, 2001

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"The shortest path between two truths in the real domain passes through the complex domain." – Jacques Hadamard

"Such is the advantage of a well-constructed language that its simplified notation often becomes the source of profound theories." – P. S. Laplace

1 Problems

- 1. Do **one** of the following.
 - (a) Let R be an integral domain. Prove the polynomial ring R[x] is also an integral domain.
 - (b) Let R be an integral domain. Prove the invertible elements of the polynomila ring R[x] are the units of R.
- 2. Prove the maximal ideals in the ring of integers are the principal ideals generated by prime integers.
- 3. Determine the maximal ideals of $\mathbf{R}[x] / (x^2 3x + 2)$ where \mathbf{R} denotes the real numbers.
- 4. Let R be a ring and let I be an ideal of R. Let M be an ideal of R containing I and let $\overline{M} = M/I$ be the corresponding ideal of \overline{R} . Prove M is maximal if and only if \overline{M} is maximal.
- 5. Prove either of the following:
 - (a) $\mathbf{Z}_{2}[x] / (x^{3} + x + 1)$ is a field.
 - (b) $\mathbf{Z}_{3}[x] / (x^{3} + x + 1)$ is not a field.