## November 13, 2001

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

## The Problems

( 15 points each ) Do any six (6) of the following.

1. Given a group $G$, a subgroup $H$ and any element $g \in G$, prove that the conjugate subgroup $g H g^{-1}$ is isomorphic to $H$
2. Let $G$ be a group acting on the set $S$. Let $s$ be a fixed element in $S$ and $t$ an element in the orbit of $s$, say $t=a s$. Prove the stabilizer of $t$ in $G$ is a conjugate subgroup of the stabilizer of $s$ in $G$. Specifically, show $G_{t}=a G_{s} a^{-1}$.
3. Let $G=G L(2, \mathbf{R})$ act on the set $S=\mathbf{R}^{2}$ by left multiplication. That is, if $A \in G L(2, \mathbf{R})$ and $x \in \mathbf{R}^{2}$, the group action is defined by $(A, x) \mapsto A x$. What is the stabilizer of $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ ?
4. Given a group $G$, does the mapping $f: G \times G \rightarrow G$ given by $f(g, x)=x g^{-1}$ define a group action of $G$ onto itself?
5. Use a group action to count the rotational symmetries of a tetrahedron. Be explicit about what you choose as your set $S$.
6. We say a group action of $G$ on a set $S$ is faithful if

$$
(g s=s \forall s \in S) \Rightarrow(g=e) .
$$

Let $G$ be the dihedral group of symmetries of a square.
(a) Is the action of $G$ on the set of vertices a faithful action?
(b) is the action of $G$ on the set of diagonals a faithful action?
7. Let $K \subset H \subset G$ be subgroups of a finite group $G$. Prove the formula

$$
[G: K]=[G: H][H: K] .
$$

8. Let $G$ be a group and $\operatorname{Aut}(G)$ the group of automorphisms of $\operatorname{Aut}(G)$. Prove or disprove: The set of inner automorphisms $\operatorname{Inn}(G)=\left\{\phi \in \operatorname{Aut}(G): \phi(g)=x g x^{-1}\right.$ for some $\left.x \in G\right\}$ is a normal subgroup of $G$. Just determine normality, you may use, without proof, the fact that $\operatorname{Inn}(G)$ is indeed a subgroup of $\operatorname{Aut}(G)$.
