November 20, 2007

Fall 2007

Exam 2

Name

Directions: Only write on one side of each page.

Do any five (5) of the following

- 1. Prove the First Isomorphism Theorem: Let $\phi : G \to G'$ be a surjective group homomorphism, and let $N = \ker(\phi)$. Then G/N is isomorphic to the G' by the function $\psi : G/N \to G'$ defined by $\psi(aN) = \phi(a)$. Recall that $\pi : G \to G/N$ defined by $\pi(g) = gN$ is a homomorphism (called the canonical homomorphism of N in G).
- 2. Let N be subroups of a group G where N is a normal subgroup of G.
 - (a) Determine the subgroups of the restrictions of the canonical homomorphism $\pi : G \to G/N$ to the subgroups H and HN.
 - (b) Apply the First Isomorphism Theorem to these restrictions to prove the Second Isomorphism Theorem: $H/(H \cap N)$ is isomorphic to (HN)/N.
- 3. When we classified the group M of rigid motions of the plane we claimed the following six relations were all true and proved a few of them. Add to our certainty by **algebraically** one of part d, part e, or part f.
 - (a) $t_a t_b = t_{a+b}$
 - (b) $\rho_{\theta}\rho_{\eta} = \rho_{\theta+\eta}$
 - (c) rr = i
 - (d) $\rho_{\theta}t_{a} = t_{a'}\rho_{\theta}$, where $a' = \rho_{\theta}(a)$
 - (e) $rt_a = t'_a r$, where a' = r(a)
 - (f) $r\rho_{\theta} = \rho_{-\theta}r$.
- 4. The following patterns represent small portions of two tilings of the infinite plane. Circle one of the following patterns and let G be the group of symmetries of that tiling. Determine, with brief explanation, both the point group of G and pictures of the vector(s) that form a basis for the translation group of G.
- 5. Let S be a set on which a group G operates. Let $H = \{g \in G : gs = s \text{ for all } s \in S\}$. Prove H is a subgroup of G and that it is a normal subgroup.
- 6. Let $G = GL(2, \mathbf{R})$ act on the set $S = \mathbf{R}^2$ by left multiplication. That is, if $A \in GL(2, \mathbf{R})$ and $x \in \mathbf{R}^2$, the group action is defined by $(A, x) \mapsto Ax$.
 - (a) Prove that this really is a group action.

(b) What is the stabilizer of
$$e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

Figure 1: 1

- 7. Compute the glide vector of the glide $t_{\vec{a}}\rho_{\theta}r$ in terms of \vec{a} and θ .
- 8. Given a group G, a subgroup H and any element $g \in G$, prove that the conjugate subgroup gHg^{-1} is isomorphic to H

2

9. Use a group action to count the rotational symmetries of a tetrahedron. Be explicit about what you choose as your set S.

Useful Facts

٠

$$\rho_{\theta} \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right) = \left[\begin{array}{c} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$
$$r \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right) = \left[\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$
$$t_{\vec{a}} \left(\vec{x} \right) = \vec{x} + \vec{a}$$