November 20, 2007
Name

Directions: Only write on one side of each page.

Do any five (5) of the following

1. Prove the First Isomorphism Theorem: Let $\phi: G \rightarrow G^{\prime}$ be a surjective group homomorphism, and let $N=\operatorname{ker}(\phi)$. Then G / N is isomorphic to the G^{\prime} by the function $\psi: G / N \rightarrow G^{\prime}$ defined by $\psi(a N)=\phi(a)$. Recall that $\pi: G \rightarrow G / N$ defined by $\pi(g)=g N$ is a homomorphism (called the canonical homomorphism of N in G).
2. Let N be subroups of a group G where N is a normal subgroup of G.
(a) Determine the subgroups of the restrictions of the canonical homomorphism $\pi: G \rightarrow G / N$ to the subgroups H and $H N$.
(b) Apply the First Isomorphism Theorem to these restrictions to prove the Second Isomorphism Theorem: $H /(H \cap N)$ is isomorphic to $(H N) / N$.
3. When we classified the group M of rigid motions of the plane we claimed the following six relations were all true and proved a few of them. Add to our certainty by algebraically one of part d, part e, or part f.
(a) $t_{a} t_{b}=t_{a+b}$
(b) $\rho_{\theta} \rho_{\eta}=\rho_{\theta+\eta}$
(c) $r r=i$
(d) $\rho_{\theta} t_{a}=t_{a^{\prime}} \rho_{\theta}$, where $a^{\prime}=\rho_{\theta}(a)$
(e) $r t_{a}=t_{a}^{\prime} r$, where $a^{\prime}=r(a)$
(f) $r \rho_{\theta}=\rho_{-\theta} r$.
4. The following patterns represent small portions of two tilings of the infinite plane. Circle one of the following patterns and let G be the group of symmetries of that tiling. Determine, with brief explanation, both the point group of G and pictures of the vector(s) that form a basis for the translation group of G.
5. Let S be a set on which a group G operates. Let $H=\{g \in G: g s=s$ for all $s \in S\}$. Prove H is a subgroup of G and that it is a normal subgroup.
6. Let $G=G L(2, \mathbf{R})$ act on the set $S=\mathbf{R}^{2}$ by left multiplication. That is, if $A \in G L(2, \mathbf{R})$ and $x \in \mathbf{R}^{2}$, the group action is defined by $(A, x) \mapsto A x$.
(a) Prove that this really is a group action.
(b) What is the stabilizer of $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$?

Figure 1: 1
7. Compute the glide vector of the glide $t_{\vec{a}} \rho_{\theta} r$ in terms of \vec{a} and θ.
8. Given a group G, a subgroup H and any element $g \in G$, prove that the conjugate subgroup $g H^{-1}$ is isomorphic to H
9. Use a group action to count the rotational symmetries of a tetrahedron. Be explicit about what you choose as your set S.

Useful Facts

$$
\begin{aligned}
\rho_{\theta}\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
r\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
t_{\vec{a}}(\vec{x}) & =\vec{x}+\vec{a}
\end{aligned}
$$

