October 9, 2007

Exam 1

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

- 1. Prove that if $\phi: G \to G'$ is a group homomorphism and $g \in G$ has finite order then $|\phi(g)|$ divides |g|.
- 2. Do **one** (1) of the following.
 - (a) If $\phi: G \to G'$ is a surjective group homomorphism and K is a normal subgroup of G, then we have already shown that $\phi(K) = \{\phi(k) : k \in K\}$ is a subgroup of G'. Prove that since K is normal in G, $\phi(K)$ must be normal in G'.
 - (b) If $\phi : G \to G'$ is a group homomorphism and K' is a normal subgroup of G', then we have already shown that $\phi^{-1}(K') = \{k \in G : \phi(k) \in K'\}$ is a subgroup of G.Prove that since K' is normal in $G' \phi^{-1}(K')$ must be normal in G.
- 3. Let $G = \langle a \rangle$ be an infinite cyclic group. Find two automorphisms of G and show that there are no other automorphisms of G.
- 4. Given a group G, subgroup H of G and element $g \in G$, we define the **conjugate subgroup of** H in G to be the set

$$gHg^{-1} = \left\{ ghg^{-1} : h \in H \right\}.$$

Prove gHg^{-1} is indeed a subgroup of G.

- 5. Do **one** of the following.
 - (a) If G contains exactly one element of order 2, prove that element is in the center of G. [Hint: consider conjugates of that element.]
 - (b) Let G be an abelian group of odd (and hence finite) order. Prove the map $\phi: G \to G$ defined by $\phi(x) = x^2$ is an automorphism.
- 6. Let $\phi: G \to G'$ be a group homomorphism with kernel K.Let H be another subgroup of G. Recall that $HK = \{hk: h \in H, k \in K\}$. Show $\phi^{-1}(\phi(H)) = HK$.

Definitions you should know.

- 1. The **general linear** group of order n over the real numbers $GL(n, \mathbf{R})$.
- 2. The **center**, Z(G), of a group G.
- 3. The **centralizer**, C(a), of an element a in a group G.

- 4. A **normal** subgroup N of a group G.
- 5. A homomorphism from the group G to the group G'.
- 6. An **automorphism** of the group G.