I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do BOTH of these "Computational" problems

C.1. [15 points] Let V be a subspace of \mathbf{C}^{n} and define $V^{\perp}=\left\{\vec{x} \in \mathbf{C}^{n} \mid\langle\vec{x}, \vec{v}\rangle=0\right.$ for every $\left.\vec{v} \in V\right\}$. Show that V^{\perp} is a subspace of \mathbf{C}^{n}.
C.2. [15 points] Let $T: P_{2} \longrightarrow P_{3}$ be given by $T(p)=x^{3} p^{\prime \prime}-x^{2} p^{\prime}+3 p$. Find the matrix representation of T with respect to the bases B, C where $B=\left\{x+1, x+2, x^{2}\right\}$ and $C=\left\{1, x, x^{2}, x^{3}\right\}$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 Points] Prove that if $T: U \rightarrow V$ is a linear transformation and W is a subspace of U then the image of W under $T, T(W)=\{T(\vec{u}): \vec{u} \in W\}$, is a subspace of V.
M.2. [15 Points] Prove Theorem SMEE (Similar Matrices have Equal Eigenvalues)

1. Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is, $p_{A}(x)=p_{B}(x)$.
M.3. [15 Points] Prove Theorem SSRLT, Spanning Set for Range of a Linear Transformation
2. Suppose that $T: U \rightarrow V$ is a linear transformation and $S=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{t}\right\}$ spans U. Then $R=\left\{T\left(u_{1}\right), T\left(u_{2}\right), T\left(u_{3}\right), \ldots, T\left(u_{t}\right)\right\}$ spans $R(T)$.
(more problems on reverse side)

Do three (3) of these "Other" problems

T.1. [15 Points] Property DVA in the definition of a vector space (see the Useful Information below) tells us that scalar multiplication distributes across the sum of two vectors. Use the principle of mathematical induction to prove the following fact that Professor Beezer used repeatedly throughout his book.

1. Theorem: Suppose V is a vector space, n is any positive integer, α is a scalar, and $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \cdots, \vec{v}_{n}$ are vectors in V. Then $\alpha \sum_{k=1}^{n} \vec{v}_{k}=\sum_{k=1}^{n} \alpha \vec{v}_{k}$.
T.2. [15 Points] Suppose that $T: V \longrightarrow V$ is a linear transformation. Prove that $(T \circ T)(\vec{v})=\overrightarrow{0}$ for every $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of T is a subset of the kernel of T).
T.3. [15 Points] Given $A \in M_{m, n}$ and $B \in M_{n, m}$, show that if $\vec{x} \in N\left(A B-I_{m}\right)$, then $B \vec{x} \in N\left(B A-I_{n}\right)$
T.4. [15 points] Let $B=\left\{1, x, x^{2}\right\}$ be the standard basis for P_{2} and $g(x)=-1+2 x$ a fixed vector in P_{2}. Find a basis for the subspace $V=\left\{f \in P_{2} \mid\left\langle\rho_{B}(f), \rho_{B}(g)\right\rangle=0\right\}$. [Note that $\langle\vec{x}, \vec{y}\rangle$ denotes the inner product of the vectors $\vec{x}, \vec{y} \in \mathbf{C}^{3}$.]

Extra Credit [10 points] Given $A \in M_{m, n}$ and $B \in M_{n, m}$, show that if $N\left(B A-I_{n}\right)=\left\{\overrightarrow{0}_{n}\right\}$ then $N\left(A B-I_{m}\right)=$ $\left\{\overrightarrow{0}_{m}\right\}$.

Useful Information

- Property DVA of the definition of a vector space V.

If $\alpha \in \mathbf{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\boldsymbol{\alpha} \mathbf{v}$.

