Final Exam

May 17, 2013

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do BOTH of these "Computational" problems

- **C.1.** [15 points] Let V be a subspace of \mathbf{C}^n and define $V^{\perp} = \{\vec{x} \in \mathbf{C}^n \mid \langle \vec{x}, \vec{v} \rangle = 0$ for every $\vec{v} \in V\}$. Show that V^{\perp} is a subspace of \mathbf{C}^n .
- **C.2.** [15 points] Let $T: P_2 \longrightarrow P_3$ be given by $T(p) = x^3 p'' x^2 p' + 3p$. Find the matrix representation of T with respect to the bases B, C where $B = \{x + 1, x + 2, x^2\}$ and $C = \{1, x, x^2, x^3\}$.

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 Points] Prove that if $T: U \to V$ is a linear transformation and W is a subspace of U then the image of W under $T, T(W) = \{T(\vec{u}) : \vec{u} \in W\}$, is a subspace of V.
- M.2. [15 Points] Prove Theorem SMEE (Similar Matrices have Equal Eigenvalues)
 - 1. Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is, $p_A(x) = p_B(x)$.
- M.3. [15 Points] Prove Theorem SSRLT, Spanning Set for Range of a Linear Transformation
 - 1. Suppose that $T: U \to V$ is a linear transformation and $S = \{u_1, u_2, u_3, ..., u_t\}$ spans U. Then $R = \{T(u_1), T(u_2), T(u_3), ..., T(u_t)\}$ spans R(T).

(more problems on reverse side)

Do three (3) of these "Other" problems

- **T.1.** [15 Points] Property DVA in the definition of a vector space (see the **Useful Information** below) tells us that scalar multiplication distributes across the sum of **two** vectors. Use the principle of mathematical induction to prove the following fact that Professor Beezer used repeatedly throughout his book.
 - 1. **Theorem:** Suppose V is a vector space, n is any positive integer, α is a scalar, and $\vec{v}_1, \vec{v}_2, \vec{v}_3, \cdots, \vec{v}_n$ are vectors in V. Then $\alpha \sum_{k=1}^n \vec{v}_k = \sum_{k=1}^n \alpha \vec{v}_k$.

- **T.2.** [15 Points] Suppose that $T: V \longrightarrow V$ is a linear transformation. Prove that $(T \circ T)(\vec{v}) = \vec{0}$ for every $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of T is a subset of the kernel of T).
- **T.3.** [15 Points] Given $A \in M_{m,n}$ and $B \in M_{n,m}$, show that if $\vec{x} \in N(AB I_m)$, then $B\vec{x} \in N(BA I_n)$
- **T.4.** [15 points] Let $B = \{1, x, x^2\}$ be the standard basis for P_2 and g(x) = -1 + 2x a fixed vector in P_2 . Find a basis for the subspace $V = \{f \in P_2 \mid \langle \rho_B(f), \rho_B(g) \rangle = 0\}$.[Note that $\langle \vec{x}, \vec{y} \rangle$ denotes the inner product of the vectors $\vec{x}, \vec{y} \in \mathbf{C}^3$.]

Extra Credit [10 points] Given $A \in M_{m,n}$ and $B \in M_{n,m}$, show that if $N(BA - I_n) = \{\vec{0}_n\}$ then $N(AB - I_m) = \{\vec{0}_m\}$.

Useful Information

• Property DVA of the definition of a vector space V. If $\alpha \in \mathbf{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha (\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.