I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do two (2) of these "Computational" problems

C.1. [15 points] Using anything you know about determinants, compute the determinant of the following matrix by hand.

$$
\left[\begin{array}{ccccc}
0 & 0 & 1 & -1 & -1 \\
2 & 4 & 2 & 4 & 2 \\
2 & 4 & 3 & 0 & 3 \\
3 & 6 & 6 & 3 & 6 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

C.2. $[9,6$ points $]$ Recall that the zero vector of the vector space $F(\mathbf{C}, \mathbf{C})=\{f \mid f: \mathbf{C} \longrightarrow \mathbf{C}\}$ is the function $Z: \mathbf{C} \longrightarrow \mathbf{C}$ defined by $Z(x)=0$ for all $x \in \mathbf{C}$. Consider the span $V=\left\langle\left\{e^{k x} \mid k \in \mathbf{C}\right\}\right\rangle$ which is a subspace of $F(\mathbf{C}, \mathbf{C})$.

1. (a) Prove that $W=\left\{f \in V \mid f^{\prime \prime}-3 f^{\prime}+f=Z\right\}$ is a subspace of V.
(b) Find a basis for W.
C.3. [15 Points] Find a basis for the kernel of the linear transformation $T: M_{2,2} \rightarrow M_{2,2}$ defined by $T(A)=\frac{1}{2} A-\frac{1}{2} A^{t}$.

Do any two (2) of these "Similar to In Class, Text, or Homework" problems
M.1. [15 Points] Prove that if $T: U \rightarrow V$ is a linear transformation and W is a subspace of U then the image of W under $T, T(W)=\{T(\vec{u}): \vec{u} \in W\}$, is a subspace of V.
M.2. [15 Points] Prove Theorem SMEE (Similar Matrices have Equal Eigenvalues)

1. Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is, $\rho_{A}(x)=\rho_{B}(x)$.
M.3. [15 Points] Prove Theorem EER Eigenvalues, Eigenvectors, Representations: Suppose that $T: V \rightarrow$ V is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$ is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ.

Do two (2) of these "Other" problems

T.1. [15 Points] In Proof LT-1 you saw a one-step test for whether or not a function is a linear transformation. This problem gives a one-step test for showing a subset of a vector space is a subspace.

1. Prove that a subset W of a vector space V is a suspace if and only if $\alpha \vec{w}_{1}+\beta \vec{w}_{2} \in W$ is true for all $\vec{w}_{1}, \vec{w}_{2} \in W$ and for all $\alpha, \beta \in \mathbf{C}$.
T.2. [15 Points] Let $B=\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$ be a basis for the subspace V of the vector space of functions with domain and codomain the set of complex numbers: $F(\mathbf{C}, \mathbf{C})=\{f \mid f: \mathbf{C} \rightarrow \mathbf{C}\}$
2. (a) Find the matrix representation $M_{B, B}^{T}$ of the linear transformation $T: V \rightarrow V$ defined by $T(f)=f^{\prime}$.
(b) Use this matrix representation to find the kernel of T, $\operatorname{ker}(T)$.
T.3. [15 Points] It is a true fact that if $V=\left\{A \in M_{n, n} \mid A\right.$ is symmetric $\}$ and $W=\left\{B \in M_{n, n} \mid B\right.$ is skew-symmetric $\}$ then $M_{n, n}=V \oplus W$. Prove this fact in the special case when $n=2$.
T.4. [15 points] Professor Beezer has proven that if V is a finite-dimensional vector space and $T: V \rightarrow V$ has Range $(T)=V$ then T is an isomorphism. Show that this is not necessarily the case if V is infinite dimensional by giving an example of a linear transformation $T: P \rightarrow P$ that is not injective but that has Range $(T)=P$.Be sure to explain why your example has the desired properties. [Recall that P is the infinite dimensional vector space of all polynomials.]

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{C}^{3}: 5 x_{1}-7 x_{2}-2 x_{3}=0\right\}$ is a subspace of \mathbf{C}^{3} by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.
R.2. [15 points] Suppose that $Z: V \longrightarrow V$ is the linear transformation denoted by $Z(\mathbf{v})=\mathbf{0}$ for all $\mathbf{v} \in V$ (i.e. Z is the "zero" linear transformation). Suppose that $T: V \longrightarrow V$ is a linear transformation such that $T^{4}=Z\left(\right.$ where $\left.T^{4}=T \circ T \circ T \circ T\right)$. Then prove that T is not invertible. Write your proof according to the standards of this semester's writing exercises.

